crowdsec/pkg/exprhelpers/debugger.go

536 lines
14 KiB
Go

package exprhelpers
import (
"fmt"
"strconv"
"strings"
"github.com/expr-lang/expr"
"github.com/expr-lang/expr/file"
"github.com/expr-lang/expr/vm"
log "github.com/sirupsen/logrus"
)
type ExprRuntimeDebug struct {
Logger *log.Entry
Lines []string
Outputs []OpOutput
}
const IndentStep = 4
// we use this struct to store the output of the expr runtime
type OpOutput struct {
Code string // relevant code part
CodeDepth int // level of nesting
BlockStart bool
BlockEnd bool
Func bool // true if it's a function call
FuncName string
Args []string
FuncResults []string
//
Comparison bool // true if it's a comparison
Negated bool
Left string
Right string
//
JumpIf bool // true if it's conditional jump
IfTrue bool
IfFalse bool
//
Condition bool // true if it's a condition
ConditionIn bool
ConditionContains bool
// used for comparisons, conditional jumps and conditions
StrConditionResult string
ConditionResult *bool // should always be present for conditions
//
Finalized bool // used when a node is finalized, we already fetched result from next OP
}
func (o *OpOutput) String() string {
ret := fmt.Sprintf("%*c", o.CodeDepth, ' ')
if o.Code != "" {
ret += fmt.Sprintf("[%s]", o.Code)
}
ret += " "
switch {
case o.BlockStart:
ret = fmt.Sprintf("%*cBLOCK_START [%s]", o.CodeDepth-IndentStep, ' ', o.Code)
return ret
case o.BlockEnd:
indent := o.CodeDepth - (IndentStep * 2)
if indent < 0 {
indent = 0
}
ret = fmt.Sprintf("%*cBLOCK_END [%s]", indent, ' ', o.Code)
if o.StrConditionResult != "" {
ret += fmt.Sprintf(" -> %s", o.StrConditionResult)
}
return ret
// A block end can carry a value, for example if it's a count, any, all etc. XXX
case o.Func:
return ret + fmt.Sprintf("%s(%s) = %s", o.FuncName, strings.Join(o.Args, ", "), strings.Join(o.FuncResults, ", "))
case o.Comparison:
if o.Negated {
ret += "NOT "
}
ret += fmt.Sprintf("%s == %s -> %s", o.Left, o.Right, o.StrConditionResult)
return ret
case o.ConditionIn:
return ret + fmt.Sprintf("%s in %s -> %s", o.Args[0], o.Args[1], o.StrConditionResult)
case o.ConditionContains:
return ret + fmt.Sprintf("%s contains %s -> %s", o.Args[0], o.Args[1], o.StrConditionResult)
case o.JumpIf && o.IfTrue:
if o.ConditionResult != nil {
if *o.ConditionResult {
return ret + "OR -> false"
}
return ret + "OR -> true"
}
return ret + "OR(?)"
case o.JumpIf && o.IfFalse:
if o.ConditionResult != nil {
if *o.ConditionResult {
return ret + "AND -> true"
}
return ret + "AND -> false"
}
return ret + "AND(?)"
}
return ret + ""
}
func (ExprRuntimeDebug) extractCode(ip int, program *vm.Program) string {
locations := program.Locations()
src := string(program.Source())
currentInstruction := locations[ip]
var closest *file.Location
for i := ip + 1; i < len(locations); i++ {
if locations[i].From > currentInstruction.From {
if closest == nil || locations[i].From < closest.From {
closest = &locations[i]
}
}
}
var end int
if closest == nil {
end = len(src)
} else {
end = closest.From
}
return cleanTextForDebug(src[locations[ip].From:end])
}
func autoQuote(v any) string {
switch x := v.(type) {
case string:
// let's avoid printing long strings. it can happen ie. when we are debugging expr with `File()` or similar helpers
if len(x) > 40 {
return fmt.Sprintf("%q", x[:40]+"...")
}
return fmt.Sprintf("%q", x)
default:
return fmt.Sprintf("%v", x)
}
}
type opHandler func(out OpOutput, prevOut *OpOutput, ip int, parts []string, vm *vm.VM, program *vm.Program) *OpOutput
var opHandlers = map[string]opHandler{
"OpBegin": opBegin,
"OpEnd": opEnd,
"OpNot": opNot,
"OpTrue": opTrue,
"OpFalse": opFalse,
"OpJumpIfTrue": opJumpIfTrue,
"OpJumpIfFalse": opJumpIfFalse,
"OpCall1": opCall1,
"OpCall2": opCall2,
"OpCall3": opCall3,
"OpCallFast": opCallFast,
"OpCallTyped": opCallTyped,
"OpCallN": opCallN,
"OpEqualString": opEqual,
"OpEqual": opEqual,
"OpEqualInt": opEqual,
"OpIn": opIn,
"OpContains": opContains,
}
func opBegin(out OpOutput, _ *OpOutput, _ int, _ []string, _ *vm.VM, _ *vm.Program) *OpOutput {
out.CodeDepth += IndentStep
out.BlockStart = true
return &out
}
func opEnd(out OpOutput, _ *OpOutput, _ int, _ []string, vm *vm.VM, _ *vm.Program) *OpOutput {
out.CodeDepth -= IndentStep
out.BlockEnd = true
// OpEnd can carry value, if it's any/all/count etc.
if len(vm.Stack) > 0 {
out.StrConditionResult = fmt.Sprintf("%v", vm.Stack)
}
return &out
}
func opNot(_ OpOutput, prevOut *OpOutput, _ int, _ []string, _ *vm.VM, _ *vm.Program) *OpOutput {
// negate the previous condition
prevOut.Negated = true
return nil
}
func opTrue(out OpOutput, _ *OpOutput, _ int, _ []string, _ *vm.VM, _ *vm.Program) *OpOutput {
// generated when possible ? (1 == 1)
out.Condition = true
out.ConditionResult = new(bool)
*out.ConditionResult = true
out.StrConditionResult = "true"
return &out
}
func opFalse(out OpOutput, _ *OpOutput, _ int, _ []string, _ *vm.VM, _ *vm.Program) *OpOutput {
// generated when possible ? (1 != 1)
out.Condition = true
out.ConditionResult = new(bool)
*out.ConditionResult = false
out.StrConditionResult = "false"
return &out
}
func opJumpIfTrue(out OpOutput, _ *OpOutput, _ int, _ []string, vm *vm.VM, _ *vm.Program) *OpOutput {
stack := vm.Stack
out.JumpIf = true
out.IfTrue = true
out.StrConditionResult = fmt.Sprintf("%v", stack[0])
if val, ok := stack[0].(bool); ok {
out.ConditionResult = new(bool)
*out.ConditionResult = val
}
return &out
}
func opJumpIfFalse(out OpOutput, _ *OpOutput, _ int, _ []string, vm *vm.VM, _ *vm.Program) *OpOutput {
stack := vm.Stack
out.JumpIf = true
out.IfFalse = true
out.StrConditionResult = fmt.Sprintf("%v", stack[0])
if val, ok := stack[0].(bool); ok {
out.ConditionResult = new(bool)
*out.ConditionResult = val
}
return &out
}
func opCall1(out OpOutput, _ *OpOutput, _ int, parts []string, vm *vm.VM, _ *vm.Program) *OpOutput {
out.Func = true
out.FuncName = parts[3]
stack := vm.Stack
num_items := 1
for i := len(stack) - 1; i >= 0 && num_items > 0; i-- {
out.Args = append(out.Args, autoQuote(stack[i]))
num_items--
}
return &out
}
func opCall2(out OpOutput, _ *OpOutput, _ int, parts []string, vm *vm.VM, _ *vm.Program) *OpOutput {
out.Func = true
out.FuncName = parts[3]
stack := vm.Stack
num_items := 2
for i := len(stack) - 1; i >= 0 && num_items > 0; i-- {
out.Args = append(out.Args, autoQuote(stack[i]))
num_items--
}
return &out
}
func opCall3(out OpOutput, _ *OpOutput, _ int, parts []string, vm *vm.VM, _ *vm.Program) *OpOutput {
out.Func = true
out.FuncName = parts[3]
stack := vm.Stack
num_items := 3
for i := len(stack) - 1; i >= 0 && num_items > 0; i-- {
out.Args = append(out.Args, autoQuote(stack[i]))
num_items--
}
return &out
}
func opCallFast(_ OpOutput, _ *OpOutput, _ int, _ []string, _ *vm.VM, _ *vm.Program) *OpOutput {
// double check OpCallFast and OpCallTyped
return nil
}
func opCallTyped(_ OpOutput, _ *OpOutput, _ int, _ []string, _ *vm.VM, _ *vm.Program) *OpOutput {
// double check OpCallFast and OpCallTyped
return nil
}
func opCallN(out OpOutput, _ *OpOutput, ip int, parts []string, vm *vm.VM, program *vm.Program) *OpOutput {
// Op for function calls with more than 3 args
out.Func = true
out.FuncName = parts[1]
stack := vm.Stack
// for OpCallN, we get the number of args
if len(program.Arguments) >= ip {
nb_args := program.Arguments[ip]
if nb_args > 0 {
// we need to skip the top item on stack
for i := len(stack) - 2; i >= 0 && nb_args > 0; i-- {
out.Args = append(out.Args, autoQuote(stack[i]))
nb_args--
}
}
} else { // let's blindly take the items on stack
for _, val := range vm.Stack {
out.Args = append(out.Args, autoQuote(val))
}
}
return &out
}
func opEqual(out OpOutput, _ *OpOutput, _ int, _ []string, vm *vm.VM, _ *vm.Program) *OpOutput {
stack := vm.Stack
out.Comparison = true
out.Left = autoQuote(stack[0])
out.Right = autoQuote(stack[1])
return &out
}
func opIn(out OpOutput, _ *OpOutput, _ int, _ []string, vm *vm.VM, _ *vm.Program) *OpOutput {
// in operator
stack := vm.Stack
out.Condition = true
out.ConditionIn = true
//seems that we tend to receive stack[1] as a map.
//it is tempting to use reflect to extract keys, but we end up with an array that doesn't match the initial order
//(because of the random order of the map)
out.Args = append(out.Args, autoQuote(stack[0]))
out.Args = append(out.Args, autoQuote(stack[1]))
return &out
}
func opContains(out OpOutput, _ *OpOutput, _ int, _ []string, vm *vm.VM, _ *vm.Program) *OpOutput {
// kind OpIn , but reverse
stack := vm.Stack
out.Condition = true
out.ConditionContains = true
//seems that we tend to receive stack[1] as a map.
//it is tempting to use reflect to extract keys, but we end up with an array that doesn't match the initial order
//(because of the random order of the map)
out.Args = append(out.Args, autoQuote(stack[0]))
out.Args = append(out.Args, autoQuote(stack[1]))
return &out
}
func (erp ExprRuntimeDebug) ipDebug(ip int, vm *vm.VM, program *vm.Program, parts []string, outputs []OpOutput) ([]OpOutput, error) {
IdxOut := len(outputs)
prevIdxOut := 0
currentDepth := 0
// when there is a function call or comparison, we need to wait for the next instruction to get the result and "finalize" the previous one
if IdxOut > 0 {
prevIdxOut = IdxOut - 1
currentDepth = outputs[prevIdxOut].CodeDepth
if outputs[prevIdxOut].Func && !outputs[prevIdxOut].Finalized {
stack := vm.Stack
num_items := 1
for i := len(stack) - 1; i >= 0 && num_items > 0; i-- {
outputs[prevIdxOut].FuncResults = append(outputs[prevIdxOut].FuncResults, autoQuote(stack[i]))
num_items--
}
outputs[prevIdxOut].Finalized = true
} else if (outputs[prevIdxOut].Comparison || outputs[prevIdxOut].Condition) && !outputs[prevIdxOut].Finalized {
stack := vm.Stack
outputs[prevIdxOut].StrConditionResult = fmt.Sprintf("%+v", stack)
if val, ok := stack[0].(bool); ok {
outputs[prevIdxOut].ConditionResult = new(bool)
*outputs[prevIdxOut].ConditionResult = val
}
outputs[prevIdxOut].Finalized = true
}
}
erp.Logger.Tracef("[STEP %d:%s] (stack:%+v) (parts:%+v) {depth:%d}", ip, parts[1], vm.Stack, parts, currentDepth)
var prevOut *OpOutput
if handler, ok := opHandlers[parts[1]]; ok {
if len(outputs) > 0 {
prevOut = &outputs[prevIdxOut]
}
out := handler(
OpOutput{
CodeDepth: currentDepth,
Code: erp.extractCode(ip, program),
},
prevOut,
ip, parts, vm, program)
if out != nil {
outputs = append(outputs, *out)
}
}
return outputs, nil
}
func (erp ExprRuntimeDebug) ipSeek(ip int) []string {
for i := range len(erp.Lines) {
parts := strings.Fields(erp.Lines[i])
if len(parts) == 0 {
continue
}
if parts[0] == strconv.Itoa(ip) {
return parts
}
}
return nil
}
func Run(program *vm.Program, env any, logger *log.Entry, debug bool) (any, error) {
if debug {
dbgInfo, ret, err := RunWithDebug(program, env, logger)
DisplayExprDebug(program, dbgInfo, logger, ret)
return ret, err
}
return expr.Run(program, env)
}
func cleanTextForDebug(text string) string {
text = strings.Join(strings.Fields(text), " ")
text = strings.Trim(text, " \t\n")
return text
}
func DisplayExprDebug(program *vm.Program, outputs []OpOutput, logger *log.Entry, ret any) {
logger.Debugf("dbg(result=%v): %s", ret, cleanTextForDebug(string(program.Source())))
for _, output := range outputs {
logger.Debugf("%s", output.String())
}
}
// TBD: Based on the level of the logger (ie. trace vs debug) we could decide to add more low level instructions (pop, push, etc.)
func RunWithDebug(program *vm.Program, env any, logger *log.Entry) ([]OpOutput, any, error) {
outputs := []OpOutput{}
erp := ExprRuntimeDebug{
Logger: logger,
}
vm := vm.Debug()
opcodes := program.Disassemble()
lines := strings.Split(opcodes, "\n")
erp.Lines = lines
go func() {
// We must never return until the execution of the program is done
var err error
erp.Logger.Tracef("[START] ip 0")
ops := erp.ipSeek(0)
if ops == nil {
log.Warningf("error while debugging expr: failed getting ops for ip 0")
}
if outputs, err = erp.ipDebug(0, vm, program, ops, outputs); err != nil {
log.Warningf("error while debugging expr: error while debugging at ip 0")
}
vm.Step()
for ip := range vm.Position() {
ops := erp.ipSeek(ip)
if ops == nil {
erp.Logger.Tracef("[DONE] ip %d", ip)
break
}
if outputs, err = erp.ipDebug(ip, vm, program, ops, outputs); err != nil {
log.Warningf("error while debugging expr: error while debugging at ip %d", ip)
}
vm.Step()
}
}()
var return_error error
ret, err := vm.Run(program, env)
// if the expr runtime failed, we don't need to wait for the debug to finish
if err != nil {
return_error = err
}
// the overall result of expression is the result of last op ?
if len(outputs) > 0 {
lastOutIdx := len(outputs)
if lastOutIdx > 0 {
lastOutIdx -= 1
}
switch val := ret.(type) {
case bool:
log.Tracef("completing with bool %t", ret)
// if outputs[lastOutIdx].Comparison {
outputs[lastOutIdx].StrConditionResult = fmt.Sprintf("%v", ret)
outputs[lastOutIdx].ConditionResult = new(bool)
*outputs[lastOutIdx].ConditionResult = val
outputs[lastOutIdx].Finalized = true
default:
log.Tracef("completing with type %T -> %v", ret, ret)
outputs[lastOutIdx].StrConditionResult = fmt.Sprintf("%v", ret)
outputs[lastOutIdx].Finalized = true
}
} else {
log.Tracef("no output from expr runtime")
}
return outputs, ret, return_error
}