chore(transaction): Simplify armed state (#2508)

* chore(transaction): Simplify armed state

Remove atomic is_armed variable and turn it into a regular local state flag. This is now possible because we have clearly defined phases with the phased barrier and baton barrier for blocking commands

---------

Signed-off-by: Vladislav <vlad@dragonflydb.io>
This commit is contained in:
Vladislav 2024-02-11 12:06:36 +03:00 committed by GitHub
parent 795d00021d
commit 963023f07c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 58 additions and 62 deletions

View file

@ -56,7 +56,7 @@ void BlockingControllerTest::SetUp() {
trans_.reset(new Transaction{&cid_}); trans_.reset(new Transaction{&cid_});
str_vec_.assign({"blpop", "x", "z", "0"}); str_vec_.assign({"x", "z", "0"});
for (auto& s : str_vec_) { for (auto& s : str_vec_) {
arg_vec_.emplace_back(s); arg_vec_.emplace_back(s);
} }
@ -78,16 +78,16 @@ void BlockingControllerTest::TearDown() {
} }
TEST_F(BlockingControllerTest, Basic) { TEST_F(BlockingControllerTest, Basic) {
shard_set->Await(0, [&] { trans_->ScheduleSingleHop([&](Transaction* t, EngineShard* shard) {
EngineShard* shard = EngineShard::tlocal();
BlockingController bc(shard); BlockingController bc(shard);
auto keys = trans_->GetShardArgs(shard->shard_id()); auto keys = t->GetShardArgs(shard->shard_id());
bc.AddWatched( bc.AddWatched(
keys, [](auto...) { return true; }, trans_.get()); keys, [](auto...) { return true; }, t);
EXPECT_EQ(1, bc.NumWatched(0)); EXPECT_EQ(1, bc.NumWatched(0));
bc.FinalizeWatched(keys, trans_.get()); bc.FinalizeWatched(keys, t);
EXPECT_EQ(0, bc.NumWatched(0)); EXPECT_EQ(0, bc.NumWatched(0));
return OpStatus::OK;
}); });
} }

View file

@ -247,9 +247,7 @@ void BaseFamilyTest::ResetService() {
auto it = head; auto it = head;
do { do {
Transaction* trans = std::get<Transaction*>(es->txq()->At(it)); Transaction* trans = std::get<Transaction*>(es->txq()->At(it));
LOG(ERROR) << "Transaction " << trans->DebugId() << " " LOG(ERROR) << "Transaction " << trans->DebugId(es->shard_id());
<< trans->GetLocalMask(es->shard_id()) << " "
<< trans->IsArmedInShard(es->shard_id());
it = txq->Next(it); it = txq->Next(it);
} while (it != head); } while (it != head);
} }

View file

@ -124,21 +124,21 @@ uint32_t Transaction::PhasedBarrier::DEBUG_Count() const {
return count_.load(memory_order_relaxed); return count_.load(memory_order_relaxed);
} }
bool Transaction::BatonBarrierrier::IsClaimed() const { bool Transaction::BatonBarrier::IsClaimed() const {
return claimed_.load(memory_order_relaxed); return claimed_.load(memory_order_relaxed);
} }
bool Transaction::BatonBarrierrier::TryClaim() { bool Transaction::BatonBarrier::TryClaim() {
return !claimed_.exchange(true, memory_order_relaxed); // false means first means success return !claimed_.exchange(true, memory_order_relaxed); // false means first means success
} }
void Transaction::BatonBarrierrier::Close() { void Transaction::BatonBarrier::Close() {
DCHECK(claimed_.load(memory_order_relaxed)); DCHECK(claimed_.load(memory_order_relaxed));
closed_.store(true, memory_order_relaxed); closed_.store(true, memory_order_relaxed);
ec_.notify(); // release ec_.notify(); // release
} }
cv_status Transaction::BatonBarrierrier::Wait(time_point tp) { cv_status Transaction::BatonBarrier::Wait(time_point tp) {
auto cb = [this] { return closed_.load(memory_order_acquire); }; auto cb = [this] { return closed_.load(memory_order_acquire); };
if (tp != time_point::max()) { if (tp != time_point::max()) {
@ -407,7 +407,7 @@ void Transaction::InitByKeys(const KeyIndex& key_index) {
for (const auto& sd : shard_data_) { for (const auto& sd : shard_data_) {
// sd.local_mask may be non-zero for multi transactions with instant locking. // sd.local_mask may be non-zero for multi transactions with instant locking.
// Specifically EVALs may maintain state between calls. // Specifically EVALs may maintain state between calls.
DCHECK(!sd.is_armed.load(std::memory_order_relaxed)); DCHECK_EQ(sd.local_mask & ARMED, 0);
if (!multi_) { if (!multi_) {
DCHECK_EQ(TxQueue::kEnd, sd.pq_pos); DCHECK_EQ(TxQueue::kEnd, sd.pq_pos);
} }
@ -533,7 +533,7 @@ void Transaction::MultiSwitchCmd(const CommandId* cid) {
DCHECK(IsAtomicMulti()); // Every command determines it's own active shards DCHECK(IsAtomicMulti()); // Every command determines it's own active shards
sd.local_mask &= ~ACTIVE; // so remove ACTIVE flags, but keep KEYLOCK_ACQUIRED sd.local_mask &= ~ACTIVE; // so remove ACTIVE flags, but keep KEYLOCK_ACQUIRED
} }
DCHECK(!sd.is_armed.load(memory_order_relaxed)); DCHECK_EQ(sd.local_mask & ARMED, 0);
} }
if (multi_->mode == NON_ATOMIC) { if (multi_->mode == NON_ATOMIC) {
@ -547,13 +547,18 @@ void Transaction::MultiSwitchCmd(const CommandId* cid) {
multi_->role = DEFAULT; multi_->role = DEFAULT;
} }
string Transaction::DebugId() const { string Transaction::DebugId(std::optional<ShardId> sid) const {
DCHECK_GT(use_count_.load(memory_order_relaxed), 0u); DCHECK_GT(use_count_.load(memory_order_relaxed), 0u);
string res = StrCat(Name(), "@", txid_, "/", unique_shard_cnt_); string res = StrCat(Name(), "@", txid_, "/", unique_shard_cnt_);
if (multi_) { if (multi_) {
absl::StrAppend(&res, ":", multi_->cmd_seq_num); absl::StrAppend(&res, ":", multi_->cmd_seq_num);
} }
absl::StrAppend(&res, " (", trans_id(this), ")"); absl::StrAppend(&res, " {id=", trans_id(this));
if (sid) {
absl::StrAppend(&res, ",mask[", *sid, "]=", int(shard_data_[SidToId(*sid)].local_mask),
",txqpos[]=", shard_data_[SidToId(*sid)].pq_pos);
}
absl::StrAppend(&res, "}");
return res; return res;
} }
@ -573,16 +578,13 @@ bool Transaction::RunInShard(EngineShard* shard, bool txq_ooo) {
DCHECK_GT(txid_, 0u); DCHECK_GT(txid_, 0u);
CHECK(cb_ptr_) << DebugId(); CHECK(cb_ptr_) << DebugId();
// Unlike with regular transactions we do not acquire locks upon scheduling
// because Scheduling is done before multi-exec batch is executed. Therefore we
// lock keys right before the execution of each statement.
unsigned idx = SidToId(shard->shard_id()); unsigned idx = SidToId(shard->shard_id());
auto& sd = shard_data_[idx]; auto& sd = shard_data_[idx];
CHECK(sd.is_armed.exchange(false, memory_order_relaxed)); CHECK(sd.local_mask & ARMED);
CHECK_GT(run_barrier_.DEBUG_Count(), 0u); sd.local_mask &= ~ARMED;
CHECK_GT(run_barrier_.DEBUG_Count(), 0u);
VLOG(2) << "RunInShard: " << DebugId() << " sid:" << shard->shard_id() << " " << sd.local_mask; VLOG(2) << "RunInShard: " << DebugId() << " sid:" << shard->shard_id() << " " << sd.local_mask;
bool was_suspended = sd.local_mask & SUSPENDED_Q; bool was_suspended = sd.local_mask & SUSPENDED_Q;
@ -799,7 +801,7 @@ OpStatus Transaction::ScheduleSingleHop(RunnableType cb) {
DCHECK(shard_data_.size() == 1 || multi_->mode == NON_ATOMIC); DCHECK(shard_data_.size() == 1 || multi_->mode == NON_ATOMIC);
InitTxTime(); InitTxTime();
shard_data_[SidToId(unique_shard_id_)].is_armed.store(true, memory_order_relaxed); shard_data_[SidToId(unique_shard_id_)].local_mask |= ARMED;
// Start new phase, be careful with writes until phase end! // Start new phase, be careful with writes until phase end!
run_barrier_.Start(1); run_barrier_.Start(1);
@ -931,7 +933,7 @@ void Transaction::ExecuteAsync() {
DCHECK(!IsAtomicMulti() || multi_->lock_mode.has_value()); DCHECK(!IsAtomicMulti() || multi_->lock_mode.has_value());
// Set armed flags on all active shards // Set armed flags on all active shards
IterateActiveShards([](auto& sd, auto i) { sd.is_armed.store(true, memory_order_relaxed); }); IterateActiveShards([](auto& sd, auto i) { sd.local_mask |= ARMED; });
// Start new phase: release semantics. From here we can be discovered by IsArmedInShard(), // Start new phase: release semantics. From here we can be discovered by IsArmedInShard(),
// and thus picked by a foreign thread's PollExecution(). Careful with writes until phase end! // and thus picked by a foreign thread's PollExecution(). Careful with writes until phase end!
@ -1010,7 +1012,8 @@ Transaction::RunnableResult Transaction::RunQuickie(EngineShard* shard) {
DVLOG(1) << "RunQuickSingle " << DebugId() << " " << shard->shard_id(); DVLOG(1) << "RunQuickSingle " << DebugId() << " " << shard->shard_id();
DCHECK(cb_ptr_) << DebugId() << " " << shard->shard_id(); DCHECK(cb_ptr_) << DebugId() << " " << shard->shard_id();
CHECK(sd.is_armed.exchange(false, memory_order_relaxed)); CHECK(sd.local_mask & ARMED);
sd.local_mask &= ~ARMED;
// Calling the callback in somewhat safe way // Calling the callback in somewhat safe way
RunnableResult result; RunnableResult result;
@ -1071,6 +1074,11 @@ KeyLockArgs Transaction::GetLockArgs(ShardId sid) const {
return res; return res;
} }
bool Transaction::IsArmedInShard(ShardId sid) const {
// Barrier has acquire semantics
return run_barrier_.Active() && (shard_data_[SidToId(sid)].local_mask & ARMED);
}
bool Transaction::IsActive(ShardId sid) const { bool Transaction::IsActive(ShardId sid) const {
// If we have only one shard, we often don't store infromation about all shards, so determine it // If we have only one shard, we often don't store infromation about all shards, so determine it
// solely by id // solely by id
@ -1083,6 +1091,12 @@ bool Transaction::IsActive(ShardId sid) const {
return shard_data_[SidToId(sid)].local_mask & ACTIVE; return shard_data_[SidToId(sid)].local_mask & ACTIVE;
} }
uint16_t Transaction::GetLocalMask(ShardId sid) const {
DCHECK(IsActive(sid));
DCHECK_GT(run_barrier_.DEBUG_Count(), 0u);
return shard_data_[SidToId(sid)].local_mask;
}
// Runs within a engine shard thread. // Runs within a engine shard thread.
// Optimized path that schedules and runs transactions out of order if possible. // Optimized path that schedules and runs transactions out of order if possible.
// Returns true if eagerly executed, false if the callback will be handled by the transaction // Returns true if eagerly executed, false if the callback will be handled by the transaction
@ -1114,7 +1128,7 @@ bool Transaction::ScheduleUniqueShard(EngineShard* shard) {
if (result.flags & RunnableResult::AVOID_CONCLUDING) { if (result.flags & RunnableResult::AVOID_CONCLUDING) {
// If we want to run again, we have to actually schedule this transaction // If we want to run again, we have to actually schedule this transaction
DCHECK_EQ(sd.is_armed, false); DCHECK_EQ(sd.local_mask & ARMED, 0);
continue_scheduling = true; continue_scheduling = true;
} else { } else {
LogAutoJournalOnShard(shard, result); LogAutoJournalOnShard(shard, result);

View file

@ -156,11 +156,12 @@ class Transaction {
// State on specific shard. // State on specific shard.
enum LocalMask : uint16_t { enum LocalMask : uint16_t {
ACTIVE = 1, // Set on all active shards. ACTIVE = 1, // Whether its active on this shard (to schedule or execute hops)
ARMED = 1 << 1, // Whether its armed (the hop was prepared)
OUT_OF_ORDER = OUT_OF_ORDER =
1 << 2, // Whether it can run out of order. Undefined if KEYLOCK_ACQUIRED is not set. 1 << 2, // Whether it can run out of order. Undefined if KEYLOCK_ACQUIRED isn't set
KEYLOCK_ACQUIRED = 1 << 3, // Whether its key locks are acquired KEYLOCK_ACQUIRED = 1 << 3, // Whether its key locks are acquired
SUSPENDED_Q = 1 << 4, // Whether is suspended (by WatchInShard()) SUSPENDED_Q = 1 << 4, // Whether it suspended (by WatchInShard())
AWAKED_Q = 1 << 5, // Whether it was awakened (by NotifySuspended()) AWAKED_Q = 1 << 5, // Whether it was awakened (by NotifySuspended())
UNLOCK_MULTI = 1 << 6, // Whether this shard executed UnlockMultiShardCb UNLOCK_MULTI = 1 << 6, // Whether this shard executed UnlockMultiShardCb
}; };
@ -253,23 +254,15 @@ class Transaction {
// Runs in the shard thread. // Runs in the shard thread.
KeyLockArgs GetLockArgs(ShardId sid) const; KeyLockArgs GetLockArgs(ShardId sid) const;
// Returns true if the transaction spans this shard_id.
bool IsActive(ShardId shard_id) const;
// Returns true if the transaction is waiting for shard callbacks and the shard is armed. // Returns true if the transaction is waiting for shard callbacks and the shard is armed.
// Safe to read transaction state (and update shard local) until following RunInShard() finishes. // Safe to read transaction state (and update shard local) until following RunInShard() finishes.
bool IsArmedInShard(ShardId sid) const { bool IsArmedInShard(ShardId sid) const;
if (sid >= shard_data_.size()) // For multi transactions shard_data_ spans all shards.
sid = 0;
// Barrier has acquire semantics // Returns if the transaction spans this shard. Safe only when the transaction is armed.
return run_barrier_.Active() && shard_data_[sid].is_armed.load(std::memory_order_relaxed); bool IsActive(ShardId sid) const;
}
// Called from engine set shard threads. // Returns the state mask on this shard. Safe only when the transaction is armed (or blocked).
uint16_t GetLocalMask(ShardId sid) const { uint16_t GetLocalMask(ShardId sid) const;
return shard_data_[SidToId(sid)].local_mask;
}
uint32_t GetLocalTxqPos(ShardId sid) const { uint32_t GetLocalTxqPos(ShardId sid) const {
return shard_data_[SidToId(sid)].pq_pos; return shard_data_[SidToId(sid)].pq_pos;
@ -325,7 +318,8 @@ class Transaction {
return cid_; return cid_;
} }
std::string DebugId() const; // Return debug information about a transaction, include shard local info if passed
std::string DebugId(std::optional<ShardId> sid = std::nullopt) const;
// Prepares for running ScheduleSingleHop() for a single-shard multi tx. // Prepares for running ScheduleSingleHop() for a single-shard multi tx.
// It is safe to call ScheduleSingleHop() after calling this method, but the callback passed // It is safe to call ScheduleSingleHop() after calling this method, but the callback passed
@ -364,30 +358,20 @@ class Transaction {
}; };
struct alignas(64) PerShardData { struct alignas(64) PerShardData {
PerShardData(PerShardData&&) noexcept { uint32_t arg_start = 0; // Subspan in kv_args_ with local arguments.
}
PerShardData() = default;
// this is the only variable that is accessed by both shard and coordinator threads.
std::atomic_bool is_armed{false};
// We pad with some memory so that atomic loads won't cause false sharing between threads.
char pad[46]; // to make sure PerShardData is 64 bytes and takes full cacheline.
uint32_t arg_start = 0; // Indices into args_ array.
uint32_t arg_count = 0; uint32_t arg_count = 0;
// Needed to rollback inconsistent schedulings or remove OOO transactions from // Position in the tx queue. OOO or cancelled schedules remove themselves by this index.
// tx queue.
uint32_t pq_pos = TxQueue::kEnd; uint32_t pq_pos = TxQueue::kEnd;
// Accessed within shard thread. // State of shard - bitmask with LocalState flags
// Bitmask of LocalMask enums.
uint16_t local_mask = 0; uint16_t local_mask = 0;
// Index of key relative to args in shard that the shard was woken up after blocking wait. // Index of key relative to args in shard that the shard was woken up after blocking wait.
uint16_t wake_key_pos = UINT16_MAX; uint16_t wake_key_pos = UINT16_MAX;
// Prevent "false sharing" between cache lines: occupy a full cache line (64 bytes)
char pad[64 - 4 * sizeof(uint32_t)];
}; };
static_assert(sizeof(PerShardData) == 64); // cacheline static_assert(sizeof(PerShardData) == 64); // cacheline
@ -449,7 +433,7 @@ class Transaction {
// "Single claim - single modification" barrier. Multiple threads might try to claim it, only one // "Single claim - single modification" barrier. Multiple threads might try to claim it, only one
// will succeed and will be allowed to modify the guarded object until it closes the barrier. // will succeed and will be allowed to modify the guarded object until it closes the barrier.
// A closed barrier can't be claimed again or re-used in any way. // A closed barrier can't be claimed again or re-used in any way.
class BatonBarrierrier { class BatonBarrier {
public: public:
bool IsClaimed() const; // Return if barrier is claimed, only for peeking bool IsClaimed() const; // Return if barrier is claimed, only for peeking
bool TryClaim(); // Return if the barrier was claimed successfully bool TryClaim(); // Return if the barrier was claimed successfully
@ -616,7 +600,7 @@ class Transaction {
UniqueSlotChecker unique_slot_checker_; UniqueSlotChecker unique_slot_checker_;
// Barrier for waking blocking transactions that ensures exclusivity of waking operation. // Barrier for waking blocking transactions that ensures exclusivity of waking operation.
BatonBarrierrier blocking_barrier_{}; BatonBarrier blocking_barrier_{};
// Transaction coordinator state, written and read by coordinator thread. // Transaction coordinator state, written and read by coordinator thread.
uint8_t coordinator_state_ = 0; uint8_t coordinator_state_ = 0;