mirror of
https://github.com/dragonflydb/dragonfly.git
synced 2025-05-10 18:05:44 +02:00
feat(transaction): Single hop blocking, callback flags (#2393)
* feat(transaction): Single hop blocking, callback flags
This commit is contained in:
parent
b6f4370ae7
commit
de817098a7
4 changed files with 211 additions and 116 deletions
|
@ -472,23 +472,22 @@ bool Transaction::RunInShard(EngineShard* shard, bool txq_ooo) {
|
|||
/*************************************************************************/
|
||||
// Actually running the callback.
|
||||
// If you change the logic here, also please change the logic
|
||||
RunnableResult result;
|
||||
try {
|
||||
OpStatus status = OpStatus::OK;
|
||||
|
||||
// if a transaction is suspended, we still run it because of brpoplpush/blmove case
|
||||
// that needs to run lpush on its suspended shard.
|
||||
status = (*cb_ptr_)(this, shard);
|
||||
result = (*cb_ptr_)(this, shard);
|
||||
|
||||
if (unique_shard_cnt_ == 1) {
|
||||
cb_ptr_ = nullptr; // We can do it because only a single thread runs the callback.
|
||||
local_result_ = status;
|
||||
local_result_ = result;
|
||||
} else {
|
||||
if (status == OpStatus::OUT_OF_MEMORY) {
|
||||
if (result == OpStatus::OUT_OF_MEMORY) {
|
||||
absl::base_internal::SpinLockHolder lk{&local_result_mu_};
|
||||
CHECK(local_result_ == OpStatus::OK || local_result_ == OpStatus::OUT_OF_MEMORY);
|
||||
local_result_ = status;
|
||||
local_result_ = result;
|
||||
} else {
|
||||
CHECK_EQ(OpStatus::OK, status);
|
||||
CHECK_EQ(OpStatus::OK, result);
|
||||
}
|
||||
}
|
||||
} catch (std::bad_alloc&) {
|
||||
|
@ -500,15 +499,25 @@ bool Transaction::RunInShard(EngineShard* shard, bool txq_ooo) {
|
|||
}
|
||||
|
||||
/*************************************************************************/
|
||||
// at least the coordinator thread owns the reference.
|
||||
DCHECK_GE(GetUseCount(), 1u);
|
||||
|
||||
shard->db_slice().OnCbFinish();
|
||||
|
||||
// Handle result flags to alter behaviour.
|
||||
if (result.flags & RunnableResult::AVOID_CONCLUDING) {
|
||||
// Multi shard callbacks should either all or none choose to conclude. Because they can't
|
||||
// communicate, the must know their decision ahead, consequently there is no point in using this
|
||||
// flag.
|
||||
CHECK_EQ(unique_shard_cnt_, 1u);
|
||||
DCHECK(is_concluding || multi_->concluding);
|
||||
is_concluding = false;
|
||||
}
|
||||
|
||||
// Log to jounrnal only once the command finished running
|
||||
if (is_concluding || (multi_ && multi_->concluding))
|
||||
LogAutoJournalOnShard(shard);
|
||||
|
||||
shard->db_slice().OnCbFinish();
|
||||
// at least the coordinator thread owns the reference.
|
||||
DCHECK_GE(GetUseCount(), 1u);
|
||||
|
||||
// If we're the head of tx queue (txq_ooo is false), we remove ourselves upon first invocation
|
||||
// and successive hops are run by continuation_trans_ in engine shard.
|
||||
// Otherwise we can remove ourselves only when we're concluding (so no more hops will follow).
|
||||
|
@ -928,6 +937,8 @@ void Transaction::ExecuteAsync() {
|
|||
}
|
||||
|
||||
void Transaction::Conclude() {
|
||||
if (!IsScheduled())
|
||||
return;
|
||||
auto cb = [](Transaction* t, EngineShard* shard) { return OpStatus::OK; };
|
||||
Execute(std::move(cb), true);
|
||||
}
|
||||
|
@ -963,7 +974,7 @@ void Transaction::EnableAllShards() {
|
|||
sd.local_mask |= ACTIVE;
|
||||
}
|
||||
|
||||
void Transaction::RunQuickie(EngineShard* shard) {
|
||||
Transaction::RunnableResult Transaction::RunQuickie(EngineShard* shard) {
|
||||
DCHECK(!IsAtomicMulti());
|
||||
DCHECK(shard_data_.size() == 1u || multi_->mode == NON_ATOMIC);
|
||||
DCHECK_NE(unique_shard_id_, kInvalidSid);
|
||||
|
@ -976,19 +987,23 @@ void Transaction::RunQuickie(EngineShard* shard) {
|
|||
DCHECK(cb_ptr_) << DebugId() << " " << shard->shard_id();
|
||||
|
||||
// Calling the callback in somewhat safe way
|
||||
RunnableResult result;
|
||||
try {
|
||||
local_result_ = (*cb_ptr_)(this, shard);
|
||||
result = (*cb_ptr_)(this, shard);
|
||||
} catch (std::bad_alloc&) {
|
||||
LOG_FIRST_N(ERROR, 16) << " out of memory";
|
||||
local_result_ = OpStatus::OUT_OF_MEMORY;
|
||||
result = OpStatus::OUT_OF_MEMORY;
|
||||
} catch (std::exception& e) {
|
||||
LOG(FATAL) << "Unexpected exception " << e.what();
|
||||
}
|
||||
|
||||
shard->db_slice().OnCbFinish();
|
||||
LogAutoJournalOnShard(shard);
|
||||
|
||||
// Handling the result, along with conclusion and journaling, is done by the caller
|
||||
|
||||
sd.is_armed.store(false, memory_order_relaxed);
|
||||
cb_ptr_ = nullptr; // We can do it because only a single shard runs the callback.
|
||||
return result;
|
||||
}
|
||||
|
||||
// runs in coordinator thread.
|
||||
|
@ -1030,10 +1045,11 @@ KeyLockArgs Transaction::GetLockArgs(ShardId sid) const {
|
|||
|
||||
// Runs within a engine shard thread.
|
||||
// Optimized path that schedules and runs transactions out of order if possible.
|
||||
// Returns true if was eagerly executed, false if it was scheduled into queue.
|
||||
// Returns true if eagerly executed, false if the callback will be handled by the transaction
|
||||
// queue.
|
||||
bool Transaction::ScheduleUniqueShard(EngineShard* shard) {
|
||||
DCHECK(!IsAtomicMulti());
|
||||
DCHECK_EQ(0u, txid_);
|
||||
DCHECK_EQ(txid_, 0u);
|
||||
DCHECK(shard_data_.size() == 1u || multi_->mode == NON_ATOMIC);
|
||||
DCHECK_NE(unique_shard_id_, kInvalidSid);
|
||||
|
||||
|
@ -1043,31 +1059,45 @@ bool Transaction::ScheduleUniqueShard(EngineShard* shard) {
|
|||
auto& sd = shard_data_[SidToId(unique_shard_id_)];
|
||||
DCHECK_EQ(TxQueue::kEnd, sd.pq_pos);
|
||||
|
||||
// Fast path - for uncontended keys, just run the callback.
|
||||
// That applies for single key operations like set, get, lpush etc.
|
||||
if (shard->db_slice().CheckLock(mode, lock_args) && shard->shard_lock()->Check(mode)) {
|
||||
RunQuickie(shard);
|
||||
return true;
|
||||
bool unlocked_keys =
|
||||
shard->db_slice().CheckLock(mode, lock_args) && shard->shard_lock()->Check(mode);
|
||||
bool quick_run = unlocked_keys;
|
||||
|
||||
// Fast path. If none of the keys are locked, we can run briefly atomically on the thread
|
||||
// without acquiring them at all.
|
||||
if (quick_run) {
|
||||
auto result = RunQuickie(shard);
|
||||
local_result_ = result.status;
|
||||
|
||||
if (result.flags & RunnableResult::AVOID_CONCLUDING) {
|
||||
// If we want to run again, we have to actually acquire keys, but keep ourselves disarmed
|
||||
DCHECK_EQ(sd.is_armed, false);
|
||||
unlocked_keys = false;
|
||||
} else {
|
||||
LogAutoJournalOnShard(shard);
|
||||
}
|
||||
}
|
||||
|
||||
// we can do it because only a single thread writes into txid_ and sd.
|
||||
txid_ = op_seq.fetch_add(1, memory_order_relaxed);
|
||||
sd.pq_pos = shard->txq()->Insert(this);
|
||||
// Slow path. Some of the keys are locked, so we schedule on the transaction queue.
|
||||
if (!unlocked_keys) {
|
||||
coordinator_state_ |= COORD_SCHED; // safe because single shard
|
||||
txid_ = op_seq.fetch_add(1, memory_order_relaxed); // -
|
||||
sd.pq_pos = shard->txq()->Insert(this);
|
||||
|
||||
DCHECK_EQ(0, sd.local_mask & KEYLOCK_ACQUIRED);
|
||||
DCHECK_EQ(sd.local_mask & KEYLOCK_ACQUIRED, 0);
|
||||
shard->db_slice().Acquire(mode, lock_args);
|
||||
sd.local_mask |= KEYLOCK_ACQUIRED;
|
||||
|
||||
shard->db_slice().Acquire(mode, lock_args);
|
||||
sd.local_mask |= KEYLOCK_ACQUIRED;
|
||||
DVLOG(1) << "Rescheduling " << DebugId() << " into TxQueue of size " << shard->txq()->size();
|
||||
|
||||
DVLOG(1) << "Rescheduling " << DebugId() << " into TxQueue of size " << shard->txq()->size();
|
||||
// If there are blocked transactons waiting for this tx keys, we will add this transaction
|
||||
// to the tx-queue (these keys will be contended). This will happen even if the queue was empty.
|
||||
// In that case we must poll the queue, because there will be no other callback trigerring the
|
||||
// queue before us.
|
||||
shard->PollExecution("schedule_unique", nullptr);
|
||||
}
|
||||
|
||||
// If there are blocked transactons waiting for this tx keys, we will add this transaction
|
||||
// to the tx-queue (these keys will be contended). This will happen even if the queue was empty.
|
||||
// In that case we must poll the queue, because there will be no other callback trigerring the
|
||||
// queue before us.
|
||||
shard->PollExecution("schedule_unique", nullptr);
|
||||
|
||||
return false;
|
||||
return quick_run;
|
||||
}
|
||||
|
||||
// This function should not block since it's run via RunBriefInParallel.
|
||||
|
@ -1303,11 +1333,14 @@ void Transaction::ExpireShardCb(ArgSlice wkeys, EngineShard* shard) {
|
|||
OpStatus Transaction::RunSquashedMultiCb(RunnableType cb) {
|
||||
DCHECK(multi_ && multi_->role == SQUASHED_STUB);
|
||||
DCHECK_EQ(unique_shard_cnt_, 1u);
|
||||
|
||||
auto* shard = EngineShard::tlocal();
|
||||
auto status = cb(this, shard);
|
||||
auto result = cb(this, shard);
|
||||
shard->db_slice().OnCbFinish();
|
||||
LogAutoJournalOnShard(shard);
|
||||
return status;
|
||||
|
||||
DCHECK_EQ(result.flags, 0); // if it's sophisticated, we shouldn't squash it
|
||||
return result;
|
||||
}
|
||||
|
||||
void Transaction::UnlockMultiShardCb(const KeyList& sharded_keys, EngineShard* shard,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue