mirror of
https://github.com/dragonflydb/dragonfly.git
synced 2025-05-10 18:05:44 +02:00
feat(tools): Add Zipfian cache testing tool (#640)
* adding cache testing tool Signed-off-by: Ubuntu <ubuntu@ip-172-31-12-15.us-west-2.compute.internal>
This commit is contained in:
parent
1895d3113e
commit
f4457be767
2 changed files with 117 additions and 0 deletions
116
tools/cache_testing.py
Normal file
116
tools/cache_testing.py
Normal file
|
@ -0,0 +1,116 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import redis
|
||||
import argparse
|
||||
from urllib.parse import urlparse
|
||||
import numpy as np
|
||||
|
||||
'''
|
||||
Run Cache Testing.
|
||||
This tool performs cache testing for Dragonfly
|
||||
by calling the `incrby` function on a constrained set
|
||||
of items, as defined by the user. Additionally, it
|
||||
distributes the frequency of `incrby` calls for each
|
||||
item based on a Zipfian distribution (with alpha values
|
||||
between 0 and 1 being representative of real-life cache
|
||||
load scenarios)
|
||||
'''
|
||||
|
||||
def rand_zipf_generator(n, alpha, count, pipeline):
|
||||
"""
|
||||
n: The upper bound of the values to generate a zipfian distribution over
|
||||
(n = 30 would generate a distribution of given alpha from values 1 to 30)
|
||||
alpha: The alpha parameter to be used while creating the Zipfian distribution
|
||||
num_samples: The total number of samples to generate over the Zipfian distribution
|
||||
This is a generator that yields up to count values using a generator.
|
||||
"""
|
||||
|
||||
# Calculate Zeta values from 1 to n:
|
||||
tmp = np.power( np.arange(1, n+1), -alpha )
|
||||
zeta = np.r_[0.0, np.cumsum(tmp)]
|
||||
|
||||
# Store the translation map:
|
||||
distMap = [x / zeta[-1] for x in zeta]
|
||||
|
||||
if pipeline == 0:
|
||||
# Generate an array of uniform 0-1 pseudo-random values:
|
||||
u = np.random.random(count)
|
||||
|
||||
# bisect them with distMap
|
||||
v = np.searchsorted(distMap, u)
|
||||
|
||||
samples = [t-1 for t in v]
|
||||
|
||||
for sample in samples:
|
||||
yield sample
|
||||
else:
|
||||
current_count = 0
|
||||
while current_count < count:
|
||||
# Generate an array of uniform 0-1 pseudo-random values, of the pipeline length:
|
||||
u = np.random.random(pipeline)
|
||||
|
||||
# bisect them with distMap
|
||||
v = np.searchsorted(distMap, u)
|
||||
|
||||
samples = [t-1 for t in v]
|
||||
yield samples
|
||||
|
||||
current_count += len(samples)
|
||||
|
||||
def update_stats(r, hits, misses, value_index, total_count):
|
||||
"""
|
||||
A void function that uses terminal control sequences
|
||||
to update hit/miss ratio stats for the user
|
||||
while the testing tool runs.
|
||||
"""
|
||||
percent_complete = (value_index + 1) / total_count
|
||||
|
||||
# Use the terminal control sequence to move the cursor to the beginning of the line
|
||||
print("\r", end="")
|
||||
|
||||
# Print the loading bar and current hit rate
|
||||
print("[{}{}] {:.0f}%, current hit rate: {:.6f}%".format("#" * int(percent_complete * 20), " " * int(20 - percent_complete * 20), percent_complete * 100, (hits / (hits + misses)) * 100), end="")
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Cache Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('-c', '--count', type=int, default=100000, help='total number of incrby operations')
|
||||
parser.add_argument('-u', '--uri', type=str, default='redis://localhost:6379', help='Redis server URI')
|
||||
parser.add_argument('-a', '--alpha', type=int, default=1.0, help='alpha value being used for the Zipf distribution')
|
||||
parser.add_argument('-n', '--number', type=int, default=30, help='the number of values to be used in the distribution')
|
||||
parser.add_argument('-d', '--length', type=int, default=10, help='the length of the values to be used in the distribution')
|
||||
parser.add_argument('-p', '--pipeline', type=int, default=0, help='pipeline size')
|
||||
|
||||
args = parser.parse_args()
|
||||
uri = urlparse(args.uri)
|
||||
|
||||
r = redis.StrictRedis(host=uri.hostname, port=uri.port)
|
||||
|
||||
misses = 0
|
||||
hits = 0
|
||||
|
||||
distribution_keys_generator = rand_zipf_generator(args.number, args.alpha, args.count, args.pipeline)
|
||||
|
||||
if args.pipeline == 0:
|
||||
for idx, key in enumerate(distribution_keys_generator):
|
||||
result = r.set(str(key), 'x' * args.length, nx=True)
|
||||
if result:
|
||||
misses += 1
|
||||
else:
|
||||
hits += 1
|
||||
if idx % 50 == 0:
|
||||
update_stats(r, hits, misses, idx, args.count)
|
||||
else:
|
||||
total_count = 0
|
||||
for idx, keys in enumerate(distribution_keys_generator):
|
||||
total_count += len(keys)
|
||||
p = r.pipeline(transaction=False)
|
||||
for key in keys:
|
||||
p.set(str(key), 'x' * args.length, nx=True)
|
||||
responses = p.execute()
|
||||
for resp in responses:
|
||||
if resp:
|
||||
misses += 1
|
||||
else:
|
||||
hits += 1
|
||||
if idx % 20 == 0:
|
||||
update_stats(r, hits, misses, total_count, args.count)
|
|
@ -7,3 +7,4 @@ redis==4.3.4
|
|||
requests==2.28.1
|
||||
aiocsv==1.2.3
|
||||
aiofiles==22.1.0
|
||||
numpy==1.24.1
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue