mirror of
https://github.com/dragonflydb/dragonfly.git
synced 2025-05-10 18:05:44 +02:00
* chore: get rid of lock keys 1. Introduce LockTag a type representing the part of the key that is used for locking. 2. Hash keys once in each transaction. 3. Expose swap_memory_bytes metric. --------- Signed-off-by: Roman Gershman <roman@dragonflydb.io>
884 lines
30 KiB
C++
884 lines
30 KiB
C++
// Copyright 2022, DragonflyDB authors. All rights reserved.
|
|
// See LICENSE for licensing terms.
|
|
//
|
|
|
|
#include "server/engine_shard_set.h"
|
|
|
|
#include <absl/strings/match.h>
|
|
|
|
extern "C" {
|
|
#include "redis/zmalloc.h"
|
|
}
|
|
#include <sys/statvfs.h>
|
|
|
|
#include <filesystem>
|
|
|
|
#include "base/flags.h"
|
|
#include "base/logging.h"
|
|
#include "io/proc_reader.h"
|
|
#include "server/blocking_controller.h"
|
|
#include "server/cluster/cluster_config.h"
|
|
#include "server/search/doc_index.h"
|
|
#include "server/server_state.h"
|
|
#include "server/tiered_storage.h"
|
|
#include "server/tiering/common.h"
|
|
#include "server/transaction.h"
|
|
#include "strings/human_readable.h"
|
|
#include "util/varz.h"
|
|
|
|
using namespace std;
|
|
|
|
ABSL_FLAG(string, tiered_prefix, "",
|
|
"Experimental flag. Enables tiered storage if set. "
|
|
"The string denotes the path and prefix of the files "
|
|
" associated with tiered storage. Stronly advised to use "
|
|
"high performance NVME ssd disks for this.");
|
|
|
|
ABSL_FLAG(string, tiered_prefix_v2, "", "tiered_prefix v2");
|
|
|
|
ABSL_FLAG(dfly::MemoryBytesFlag, tiered_max_file_size, dfly::MemoryBytesFlag{},
|
|
"Limit on maximum file size that is used by the database for tiered storage. "
|
|
"0 - means the program will automatically determine its maximum file size. "
|
|
"default: 0");
|
|
|
|
ABSL_FLAG(float, tiered_offload_threshold, 0.5,
|
|
"The ratio of used/max memory above which we start offloading values to disk");
|
|
|
|
ABSL_FLAG(uint32_t, hz, 100,
|
|
"Base frequency at which the server performs other background tasks. "
|
|
"Warning: not advised to decrease in production.");
|
|
|
|
ABSL_FLAG(bool, cache_mode, false,
|
|
"If true, the backend behaves like a cache, "
|
|
"by evicting entries when getting close to maxmemory limit");
|
|
// memory defragmented related flags
|
|
ABSL_FLAG(float, mem_defrag_threshold, 0.7,
|
|
"Minimum percentage of used memory relative to maxmemory cap before running "
|
|
"defragmentation");
|
|
|
|
ABSL_FLAG(float, mem_defrag_waste_threshold, 0.2,
|
|
"The ratio of wasted/committed memory above which we run defragmentation");
|
|
|
|
ABSL_FLAG(float, mem_defrag_page_utilization_threshold, 0.8,
|
|
"memory page under utilization threshold. Ratio between used and committed size, below "
|
|
"this, memory in this page will defragmented");
|
|
|
|
ABSL_FLAG(string, shard_round_robin_prefix, "",
|
|
"When non-empty, keys which start with this prefix are not distributed across shards "
|
|
"based on their value but instead via round-robin. Use cautiously! This can efficiently "
|
|
"support up to a few hundreds of prefixes. Note: prefix is looked inside hash tags when "
|
|
"cluster mode is enabled.");
|
|
|
|
namespace dfly {
|
|
|
|
using namespace tiering::literals;
|
|
|
|
using namespace util;
|
|
using absl::GetFlag;
|
|
using strings::HumanReadableNumBytes;
|
|
|
|
namespace {
|
|
|
|
constexpr uint64_t kCursorDoneState = 0u;
|
|
|
|
vector<EngineShardSet::CachedStats> cached_stats; // initialized in EngineShardSet::Init
|
|
|
|
struct ShardMemUsage {
|
|
std::size_t commited = 0;
|
|
std::size_t used = 0;
|
|
std::size_t wasted_mem = 0;
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& os, const ShardMemUsage& mem) {
|
|
return os << "commited: " << mem.commited << " vs used " << mem.used << ", wasted memory "
|
|
<< mem.wasted_mem;
|
|
}
|
|
|
|
ShardMemUsage ReadShardMemUsage(float wasted_ratio) {
|
|
ShardMemUsage usage;
|
|
zmalloc_get_allocator_wasted_blocks(wasted_ratio, &usage.used, &usage.commited,
|
|
&usage.wasted_mem);
|
|
return usage;
|
|
}
|
|
|
|
// RoundRobinSharder implements a way to distribute keys that begin with some prefix.
|
|
// Round-robin is disabled by default. It is not a general use-case optimization, but instead only
|
|
// reasonable when there are a few highly contended keys, which we'd like to spread between the
|
|
// shards evenly.
|
|
// When enabled, the distribution is done via hash table: the hash of the key is used to look into
|
|
// a pre-allocated vector. This means that collisions are possible, but are very unlikely if only
|
|
// a few keys are used.
|
|
// Thread safe.
|
|
class RoundRobinSharder {
|
|
public:
|
|
static void Init() {
|
|
round_robin_prefix_ = absl::GetFlag(FLAGS_shard_round_robin_prefix);
|
|
|
|
if (IsEnabled()) {
|
|
// ~100k entries will consume 200kb per thread, and will allow 100 keys with < 2.5% collision
|
|
// probability. Since this has a considerable footprint, we only allocate when enabled. We're
|
|
// using a prime number close to 100k for better utilization.
|
|
constexpr size_t kRoundRobinSize = 100'003;
|
|
round_robin_shards_tl_cache_.resize(kRoundRobinSize);
|
|
std::fill(round_robin_shards_tl_cache_.begin(), round_robin_shards_tl_cache_.end(),
|
|
kInvalidSid);
|
|
|
|
std::lock_guard guard(mutex_);
|
|
if (round_robin_shards_.empty()) {
|
|
round_robin_shards_ = round_robin_shards_tl_cache_;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void Destroy() {
|
|
round_robin_shards_tl_cache_.clear();
|
|
|
|
std::lock_guard guard(mutex_);
|
|
round_robin_shards_.clear();
|
|
}
|
|
|
|
static bool IsEnabled() {
|
|
return !round_robin_prefix_.empty();
|
|
}
|
|
|
|
static optional<ShardId> TryGetShardId(string_view key, XXH64_hash_t key_hash) {
|
|
DCHECK(!round_robin_shards_tl_cache_.empty());
|
|
|
|
if (!absl::StartsWith(key, round_robin_prefix_)) {
|
|
return nullopt;
|
|
}
|
|
|
|
size_t index = key_hash % round_robin_shards_tl_cache_.size();
|
|
ShardId sid = round_robin_shards_tl_cache_[index];
|
|
|
|
if (sid == kInvalidSid) {
|
|
std::lock_guard guard(mutex_);
|
|
sid = round_robin_shards_[index];
|
|
if (sid == kInvalidSid) {
|
|
sid = next_shard_;
|
|
round_robin_shards_[index] = sid;
|
|
next_shard_ = (next_shard_ + 1) % shard_set->size();
|
|
}
|
|
round_robin_shards_tl_cache_[index] = sid;
|
|
}
|
|
|
|
return sid;
|
|
}
|
|
|
|
private:
|
|
static thread_local string round_robin_prefix_;
|
|
static thread_local vector<ShardId> round_robin_shards_tl_cache_;
|
|
static vector<ShardId> round_robin_shards_ ABSL_GUARDED_BY(mutex_);
|
|
static ShardId next_shard_ ABSL_GUARDED_BY(mutex_);
|
|
static fb2::Mutex mutex_;
|
|
};
|
|
|
|
bool HasContendedLocks(ShardId shard_id, Transaction* trx, const DbTable* table) {
|
|
auto is_contended = [table](LockFp fp) { return table->trans_locks.Find(fp)->IsContended(); };
|
|
|
|
if (trx->IsMulti()) {
|
|
auto fps = trx->GetMultiFps();
|
|
for (const auto& [sid, fp] : fps) {
|
|
if (sid == shard_id && is_contended(fp))
|
|
return true;
|
|
}
|
|
} else {
|
|
KeyLockArgs lock_args = trx->GetLockArgs(shard_id);
|
|
for (size_t i = 0; i < lock_args.fps.size(); ++i) {
|
|
if (is_contended(lock_args.fps[i]))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
thread_local string RoundRobinSharder::round_robin_prefix_;
|
|
thread_local vector<ShardId> RoundRobinSharder::round_robin_shards_tl_cache_;
|
|
vector<ShardId> RoundRobinSharder::round_robin_shards_;
|
|
ShardId RoundRobinSharder::next_shard_;
|
|
fb2::Mutex RoundRobinSharder::mutex_;
|
|
|
|
} // namespace
|
|
|
|
constexpr size_t kQueueLen = 64;
|
|
|
|
__thread EngineShard* EngineShard::shard_ = nullptr;
|
|
EngineShardSet* shard_set = nullptr;
|
|
uint64_t TEST_current_time_ms = 0;
|
|
|
|
EngineShard::Stats& EngineShard::Stats::operator+=(const EngineShard::Stats& o) {
|
|
static_assert(sizeof(Stats) == 48);
|
|
|
|
defrag_attempt_total += o.defrag_attempt_total;
|
|
defrag_realloc_total += o.defrag_realloc_total;
|
|
defrag_task_invocation_total += o.defrag_task_invocation_total;
|
|
poll_execution_total += o.poll_execution_total;
|
|
tx_ooo_total += o.tx_ooo_total;
|
|
tx_immediate_total += o.tx_immediate_total;
|
|
|
|
return *this;
|
|
}
|
|
|
|
void EngineShard::DefragTaskState::UpdateScanState(uint64_t cursor_val) {
|
|
cursor = cursor_val;
|
|
underutilized_found = false;
|
|
// Once we're done with a db, jump to the next
|
|
if (cursor == kCursorDoneState) {
|
|
dbid++;
|
|
}
|
|
}
|
|
|
|
void EngineShard::DefragTaskState::ResetScanState() {
|
|
dbid = cursor = 0u;
|
|
underutilized_found = false;
|
|
}
|
|
|
|
// This function checks 3 things:
|
|
// 1. Don't try memory fragmentation if we don't use "enough" memory (control by
|
|
// mem_defrag_threshold flag)
|
|
// 2. We have memory blocks that can be better utilized (there is a "wasted memory" in them).
|
|
// 3. in case the above is OK, make sure that we have a "gap" between usage and commited memory
|
|
// (control by mem_defrag_waste_threshold flag)
|
|
bool EngineShard::DefragTaskState::CheckRequired() {
|
|
if (cursor > kCursorDoneState || underutilized_found) {
|
|
VLOG(2) << "cursor: " << cursor << " and underutilized_found " << underutilized_found;
|
|
return true;
|
|
}
|
|
|
|
const std::size_t memory_per_shard = max_memory_limit / shard_set->size();
|
|
if (memory_per_shard < (1 << 16)) { // Too small.
|
|
return false;
|
|
}
|
|
|
|
const std::size_t threshold_mem = memory_per_shard * GetFlag(FLAGS_mem_defrag_threshold);
|
|
const double waste_threshold = GetFlag(FLAGS_mem_defrag_waste_threshold);
|
|
|
|
ShardMemUsage usage = ReadShardMemUsage(GetFlag(FLAGS_mem_defrag_page_utilization_threshold));
|
|
|
|
if (threshold_mem < usage.commited &&
|
|
usage.wasted_mem > (uint64_t(usage.commited * waste_threshold))) {
|
|
VLOG(1) << "memory issue found for memory " << usage;
|
|
underutilized_found = true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool EngineShard::DoDefrag() {
|
|
// --------------------------------------------------------------------------
|
|
// NOTE: This task is running with exclusive access to the shard.
|
|
// i.e. - Since we are using shared noting access here, and all access
|
|
// are done using fibers, This fiber is run only when no other fiber in the
|
|
// context of the controlling thread will access this shard!
|
|
// --------------------------------------------------------------------------
|
|
|
|
constexpr size_t kMaxTraverses = 40;
|
|
const float threshold = GetFlag(FLAGS_mem_defrag_page_utilization_threshold);
|
|
|
|
auto& slice = db_slice();
|
|
|
|
// If we moved to an invalid db, skip as long as it's not the last one
|
|
while (!slice.IsDbValid(defrag_state_.dbid) && defrag_state_.dbid + 1 < slice.db_array_size())
|
|
defrag_state_.dbid++;
|
|
|
|
// If we found no valid db, we finished traversing and start from scratch next time
|
|
if (!slice.IsDbValid(defrag_state_.dbid)) {
|
|
defrag_state_.ResetScanState();
|
|
return false;
|
|
}
|
|
|
|
DCHECK(slice.IsDbValid(defrag_state_.dbid));
|
|
auto [prime_table, expire_table] = slice.GetTables(defrag_state_.dbid);
|
|
PrimeTable::Cursor cur = defrag_state_.cursor;
|
|
uint64_t reallocations = 0;
|
|
unsigned traverses_count = 0;
|
|
uint64_t attempts = 0;
|
|
|
|
do {
|
|
cur = prime_table->Traverse(cur, [&](PrimeIterator it) {
|
|
// for each value check whether we should move it because it
|
|
// seats on underutilized page of memory, and if so, do it.
|
|
bool did = it->second.DefragIfNeeded(threshold);
|
|
attempts++;
|
|
if (did) {
|
|
reallocations++;
|
|
}
|
|
});
|
|
traverses_count++;
|
|
} while (traverses_count < kMaxTraverses && cur);
|
|
|
|
defrag_state_.UpdateScanState(cur.value());
|
|
|
|
if (reallocations > 0) {
|
|
VLOG(1) << "shard " << slice.shard_id() << ": successfully defrag " << reallocations
|
|
<< " times, did it in " << traverses_count << " cursor is at the "
|
|
<< (defrag_state_.cursor == kCursorDoneState ? "end" : "in progress");
|
|
} else {
|
|
VLOG(1) << "shard " << slice.shard_id() << ": run the defrag " << traverses_count
|
|
<< " times out of maximum " << kMaxTraverses << ", with cursor at "
|
|
<< (defrag_state_.cursor == kCursorDoneState ? "end" : "in progress")
|
|
<< " but no location for defrag were found";
|
|
}
|
|
|
|
stats_.defrag_realloc_total += reallocations;
|
|
stats_.defrag_task_invocation_total++;
|
|
stats_.defrag_attempt_total += attempts;
|
|
|
|
return true;
|
|
}
|
|
|
|
// the memory defragmentation task is as follow:
|
|
// 1. Check if memory usage is high enough
|
|
// 2. Check if diff between commited and used memory is high enough
|
|
// 3. if all the above pass -> scan this shard and try to find whether we can move pointer to
|
|
// underutilized pages values
|
|
// if the cursor returned from scan is not in done state, schedule the task to run at high
|
|
// priority.
|
|
// otherwise lower the task priority so that it would not use the CPU when not required
|
|
uint32_t EngineShard::DefragTask() {
|
|
constexpr uint32_t kRunAtLowPriority = 0u;
|
|
const auto shard_id = db_slice().shard_id();
|
|
|
|
if (defrag_state_.CheckRequired()) {
|
|
VLOG(2) << shard_id << ": need to run defrag memory cursor state: " << defrag_state_.cursor
|
|
<< ", underutilzation found: " << defrag_state_.underutilized_found;
|
|
if (DoDefrag()) {
|
|
// we didn't finish the scan
|
|
return util::ProactorBase::kOnIdleMaxLevel;
|
|
}
|
|
}
|
|
return kRunAtLowPriority;
|
|
}
|
|
|
|
EngineShard::EngineShard(util::ProactorBase* pb, mi_heap_t* heap)
|
|
: queue_(1, kQueueLen),
|
|
txq_([](const Transaction* t) { return t->txid(); }),
|
|
mi_resource_(heap),
|
|
db_slice_(pb->GetPoolIndex(), GetFlag(FLAGS_cache_mode), this) {
|
|
tmp_str1 = sdsempty();
|
|
|
|
db_slice_.UpdateExpireBase(absl::GetCurrentTimeNanos() / 1000000, 0);
|
|
// start the defragmented task here
|
|
defrag_task_ = pb->AddOnIdleTask([this]() { return this->DefragTask(); });
|
|
queue_.Start(absl::StrCat("shard_queue_", db_slice_.shard_id()));
|
|
}
|
|
|
|
EngineShard::~EngineShard() {
|
|
sdsfree(tmp_str1);
|
|
}
|
|
|
|
void EngineShard::Shutdown() {
|
|
queue_.Shutdown();
|
|
|
|
if (tiered_storage_) {
|
|
tiered_storage_->Shutdown();
|
|
}
|
|
|
|
fiber_periodic_done_.Notify();
|
|
if (fiber_periodic_.IsJoinable()) {
|
|
fiber_periodic_.Join();
|
|
}
|
|
|
|
ProactorBase::me()->RemoveOnIdleTask(defrag_task_);
|
|
}
|
|
|
|
void EngineShard::StartPeriodicFiber(util::ProactorBase* pb) {
|
|
uint32_t clock_cycle_ms = 1000 / std::max<uint32_t>(1, GetFlag(FLAGS_hz));
|
|
if (clock_cycle_ms == 0)
|
|
clock_cycle_ms = 1;
|
|
|
|
fiber_periodic_ = MakeFiber([this, index = pb->GetPoolIndex(), period_ms = clock_cycle_ms] {
|
|
ThisFiber::SetName(absl::StrCat("shard_periodic", index));
|
|
RunPeriodic(std::chrono::milliseconds(period_ms));
|
|
});
|
|
}
|
|
|
|
void EngineShard::InitThreadLocal(ProactorBase* pb, bool update_db_time, size_t max_file_size) {
|
|
CHECK(shard_ == nullptr) << pb->GetPoolIndex();
|
|
|
|
mi_heap_t* data_heap = ServerState::tlocal()->data_heap();
|
|
void* ptr = mi_heap_malloc_aligned(data_heap, sizeof(EngineShard), alignof(EngineShard));
|
|
shard_ = new (ptr) EngineShard(pb, data_heap);
|
|
|
|
CompactObj::InitThreadLocal(shard_->memory_resource());
|
|
SmallString::InitThreadLocal(data_heap);
|
|
|
|
string backing_prefix = GetFlag(FLAGS_tiered_prefix);
|
|
if (!backing_prefix.empty()) {
|
|
if (pb->GetKind() != ProactorBase::IOURING) {
|
|
LOG(ERROR) << "Only ioring based backing storage is supported. Exiting...";
|
|
exit(1);
|
|
}
|
|
|
|
shard_->tiered_storage_.reset(new TieredStorage(&shard_->db_slice_, max_file_size));
|
|
error_code ec = shard_->tiered_storage_->Open(backing_prefix);
|
|
CHECK(!ec) << ec.message(); // TODO
|
|
}
|
|
|
|
if (string backing_prefix = GetFlag(FLAGS_tiered_prefix_v2); !backing_prefix.empty()) {
|
|
LOG_IF(FATAL, pb->GetKind() != ProactorBase::IOURING)
|
|
<< "Only ioring based backing storage is supported. Exiting...";
|
|
|
|
shard_->tiered_storage_v2_.reset(new TieredStorageV2{&shard_->db_slice_});
|
|
error_code ec = shard_->tiered_storage_v2_->Open(backing_prefix);
|
|
CHECK(!ec) << ec.message();
|
|
}
|
|
|
|
RoundRobinSharder::Init();
|
|
|
|
shard_->shard_search_indices_.reset(new ShardDocIndices());
|
|
|
|
if (update_db_time) {
|
|
// Must be last, as it accesses objects initialized above.
|
|
shard_->StartPeriodicFiber(pb);
|
|
}
|
|
}
|
|
|
|
void EngineShard::DestroyThreadLocal() {
|
|
if (!shard_)
|
|
return;
|
|
|
|
uint32_t index = shard_->db_slice_.shard_id();
|
|
mi_heap_t* tlh = shard_->mi_resource_.heap();
|
|
|
|
shard_->Shutdown();
|
|
|
|
shard_->~EngineShard();
|
|
mi_free(shard_);
|
|
shard_ = nullptr;
|
|
CompactObj::InitThreadLocal(nullptr);
|
|
mi_heap_delete(tlh);
|
|
RoundRobinSharder::Destroy();
|
|
VLOG(1) << "Shard reset " << index;
|
|
}
|
|
|
|
// Is called by Transaction::ExecuteAsync in order to run transaction tasks.
|
|
// Only runs in its own thread.
|
|
void EngineShard::PollExecution(const char* context, Transaction* trans) {
|
|
DVLOG(2) << "PollExecution " << context << " " << (trans ? trans->DebugId() : "") << " "
|
|
<< txq_.size() << " " << (continuation_trans_ ? continuation_trans_->DebugId() : "");
|
|
|
|
ShardId sid = shard_id();
|
|
stats_.poll_execution_total++;
|
|
|
|
// If any of the following flags are present, we are guaranteed to run in this function:
|
|
// 1. AWAKED_Q -> Blocking transactions are executed immediately after waking up, they don't
|
|
// occupy a place in txq and have highest priority
|
|
// 2. SUSPENDED_Q -> Suspended shards are run to clean up and finalize blocking keys
|
|
// 3. OUT_OF_ORDER -> Transactions without conflicting keys can run earlier than their position in
|
|
// txq is reached
|
|
uint16_t flags = Transaction::AWAKED_Q | Transaction::SUSPENDED_Q | Transaction::OUT_OF_ORDER;
|
|
auto [trans_mask, disarmed] =
|
|
trans ? trans->DisarmInShardWhen(sid, flags) : make_pair(uint16_t(0), false);
|
|
|
|
if (trans && trans_mask == 0) // If not armed, it means that this poll task expired
|
|
return;
|
|
|
|
if (trans_mask & Transaction::AWAKED_Q) {
|
|
CHECK(continuation_trans_ == nullptr || continuation_trans_ == trans)
|
|
<< continuation_trans_->DebugId() << " when polling " << trans->DebugId()
|
|
<< "cont_mask: " << continuation_trans_->DEBUG_GetLocalMask(sid) << " vs "
|
|
<< trans->DEBUG_GetLocalMask(sid);
|
|
|
|
// Commands like BRPOPLPUSH don't conclude immediately
|
|
if (trans->RunInShard(this, false)) {
|
|
continuation_trans_ = trans;
|
|
return;
|
|
}
|
|
|
|
trans = nullptr; // Avoid handling the caller below
|
|
continuation_trans_ = nullptr;
|
|
}
|
|
|
|
string dbg_id;
|
|
auto run = [this, &dbg_id](Transaction* tx, bool is_ooo) -> bool /* keep */ {
|
|
dbg_id = VLOG_IS_ON(1) ? tx->DebugId() : "";
|
|
bool keep = tx->RunInShard(this, is_ooo);
|
|
DLOG_IF(INFO, !dbg_id.empty()) << dbg_id << ", keep " << keep << ", ooo " << is_ooo;
|
|
return keep;
|
|
};
|
|
|
|
// Check the currently running transaction, we have to handle it first until it concludes
|
|
if (continuation_trans_) {
|
|
bool is_self = continuation_trans_ == trans;
|
|
if (is_self)
|
|
trans = nullptr;
|
|
|
|
if ((is_self && disarmed) || continuation_trans_->DisarmInShard(sid)) {
|
|
if (bool keep = run(continuation_trans_, false); !keep) {
|
|
// if this holds, we can remove this check altogether.
|
|
DCHECK(continuation_trans_ == nullptr);
|
|
continuation_trans_ = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Progress on the transaction queue if no transaction is running currently.
|
|
Transaction* head = nullptr;
|
|
while (continuation_trans_ == nullptr && !txq_.Empty()) {
|
|
// Break if there are any awakened transactions, as we must give way to them
|
|
// before continuing to handle regular transactions from the queue.
|
|
if (blocking_controller_ && blocking_controller_->HasAwakedTransaction())
|
|
break;
|
|
|
|
head = get<Transaction*>(txq_.Front());
|
|
|
|
VLOG(2) << "Considering head " << head->DebugId()
|
|
<< " isarmed: " << head->DEBUG_IsArmedInShard(sid);
|
|
|
|
// If the transaction isn't armed yet, it will be handled by a successive poll
|
|
bool should_run = (head == trans && disarmed) || head->DisarmInShard(sid);
|
|
if (!should_run)
|
|
break;
|
|
|
|
// Avoid processing the caller transaction below if we found it in the queue,
|
|
// because it most likely won't have enough time to arm itself again.
|
|
if (head == trans)
|
|
trans = nullptr;
|
|
|
|
TxId txid = head->txid();
|
|
|
|
// Update commited_txid before running, because RunInShard might block on i/o.
|
|
// This way scheduling transactions won't see an understated value.
|
|
DCHECK_LT(committed_txid_, txid); // strictly increasing when processed via txq
|
|
committed_txid_ = txid;
|
|
|
|
if (bool keep = run(head, false); keep)
|
|
continuation_trans_ = head;
|
|
}
|
|
|
|
// If we disarmed, but didn't find ourselves in the loop, run now.
|
|
if (trans && disarmed) {
|
|
DCHECK(trans != head);
|
|
DCHECK(trans_mask & (Transaction::OUT_OF_ORDER | Transaction::SUSPENDED_Q));
|
|
|
|
bool is_ooo = trans_mask & Transaction::OUT_OF_ORDER;
|
|
bool keep = run(trans, is_ooo);
|
|
if (is_ooo && !keep) {
|
|
stats_.tx_ooo_total++;
|
|
}
|
|
|
|
// If the transaction concluded, it must remove itself from the tx queue.
|
|
// Otherwise it is required to stay there to keep the relative order.
|
|
if (is_ooo && !trans->IsMulti())
|
|
DCHECK_EQ(keep, trans->DEBUG_GetTxqPosInShard(sid) != TxQueue::kEnd);
|
|
}
|
|
}
|
|
|
|
void EngineShard::RemoveContTx(Transaction* tx) {
|
|
if (continuation_trans_ == tx) {
|
|
continuation_trans_ = nullptr;
|
|
}
|
|
}
|
|
|
|
void EngineShard::Heartbeat() {
|
|
CacheStats();
|
|
|
|
if (IsReplica()) // Never run expiration on replica.
|
|
return;
|
|
|
|
constexpr double kTtlDeleteLimit = 200;
|
|
constexpr double kRedLimitFactor = 0.1;
|
|
|
|
uint32_t traversed = GetMovingSum6(TTL_TRAVERSE);
|
|
uint32_t deleted = GetMovingSum6(TTL_DELETE);
|
|
unsigned ttl_delete_target = 5;
|
|
|
|
if (deleted > 10) {
|
|
// deleted should be <= traversed.
|
|
// hence we map our delete/traversed ratio into a range [0, kTtlDeleteLimit).
|
|
// The higher t
|
|
ttl_delete_target = kTtlDeleteLimit * double(deleted) / (double(traversed) + 10);
|
|
}
|
|
|
|
ssize_t eviction_redline = (max_memory_limit * kRedLimitFactor) / shard_set->size();
|
|
size_t tiering_redline =
|
|
(max_memory_limit * GetFlag(FLAGS_tiered_offload_threshold)) / shard_set->size();
|
|
DbContext db_cntx;
|
|
db_cntx.time_now_ms = GetCurrentTimeMs();
|
|
|
|
for (unsigned i = 0; i < db_slice_.db_array_size(); ++i) {
|
|
if (!db_slice_.IsDbValid(i))
|
|
continue;
|
|
|
|
db_cntx.db_index = i;
|
|
auto [pt, expt] = db_slice_.GetTables(i);
|
|
if (expt->size() > pt->size() / 4) {
|
|
DbSlice::DeleteExpiredStats stats = db_slice_.DeleteExpiredStep(db_cntx, ttl_delete_target);
|
|
|
|
counter_[TTL_TRAVERSE].IncBy(stats.traversed);
|
|
counter_[TTL_DELETE].IncBy(stats.deleted);
|
|
}
|
|
|
|
// if our budget is below the limit
|
|
if (db_slice_.memory_budget() < eviction_redline) {
|
|
db_slice_.FreeMemWithEvictionStep(i, eviction_redline - db_slice_.memory_budget());
|
|
}
|
|
|
|
if (tiered_storage_) {
|
|
size_t offload_bytes = 0;
|
|
if (UsedMemory() > tiering_redline) {
|
|
offload_bytes = UsedMemory() - tiering_redline;
|
|
}
|
|
db_slice_.ScheduleForOffloadStep(i, offload_bytes);
|
|
}
|
|
}
|
|
|
|
// Journal entries for expired entries are not writen to socket in the loop above.
|
|
// Trigger write to socket when loop finishes.
|
|
if (auto journal = EngineShard::tlocal()->journal(); journal) {
|
|
TriggerJournalWriteToSink();
|
|
}
|
|
}
|
|
|
|
void EngineShard::RunPeriodic(std::chrono::milliseconds period_ms) {
|
|
bool runs_global_periodic = (shard_id() == 0); // Only shard 0 runs global periodic.
|
|
unsigned global_count = 0;
|
|
int64_t last_stats_time = time(nullptr);
|
|
|
|
while (true) {
|
|
Heartbeat();
|
|
if (fiber_periodic_done_.WaitFor(period_ms)) {
|
|
VLOG(2) << "finished running engine shard periodic task";
|
|
return;
|
|
}
|
|
|
|
if (runs_global_periodic) {
|
|
++global_count;
|
|
|
|
// Every 8 runs, update the global stats.
|
|
if (global_count % 8 == 0) {
|
|
uint64_t sum = 0;
|
|
const auto& stats = EngineShardSet::GetCachedStats();
|
|
for (const auto& s : stats)
|
|
sum += s.used_memory.load(memory_order_relaxed);
|
|
|
|
used_mem_current.store(sum, memory_order_relaxed);
|
|
|
|
// Single writer, so no races.
|
|
if (sum > used_mem_peak.load(memory_order_relaxed))
|
|
used_mem_peak.store(sum, memory_order_relaxed);
|
|
|
|
int64_t cur_time = time(nullptr);
|
|
if (cur_time != last_stats_time) {
|
|
last_stats_time = cur_time;
|
|
io::Result<io::StatusData> sdata_res = io::ReadStatusInfo();
|
|
if (sdata_res) {
|
|
size_t total_rss = sdata_res->vm_rss + sdata_res->hugetlb_pages;
|
|
rss_mem_current.store(total_rss, memory_order_relaxed);
|
|
if (rss_mem_peak.load(memory_order_relaxed) < total_rss)
|
|
rss_mem_peak.store(total_rss, memory_order_relaxed);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void EngineShard::CacheStats() {
|
|
// mi_heap_visit_blocks(tlh, false /* visit all blocks*/, visit_cb, &sum);
|
|
mi_stats_merge();
|
|
|
|
// Used memory for this shard.
|
|
size_t used_mem = UsedMemory();
|
|
cached_stats[db_slice_.shard_id()].used_memory.store(used_mem, memory_order_relaxed);
|
|
ssize_t free_mem = max_memory_limit - used_mem_current.load(memory_order_relaxed);
|
|
|
|
size_t entries = 0;
|
|
size_t table_memory = 0;
|
|
for (size_t i = 0; i < db_slice_.db_array_size(); ++i) {
|
|
DbTable* table = db_slice_.GetDBTable(i);
|
|
if (table) {
|
|
entries += table->prime.size();
|
|
table_memory += (table->prime.mem_usage() + table->expire.mem_usage());
|
|
}
|
|
}
|
|
size_t obj_memory = table_memory <= used_mem ? used_mem - table_memory : 0;
|
|
|
|
size_t bytes_per_obj = entries > 0 ? obj_memory / entries : 0;
|
|
db_slice_.SetCachedParams(free_mem / shard_set->size(), bytes_per_obj);
|
|
}
|
|
|
|
size_t EngineShard::UsedMemory() const {
|
|
return mi_resource_.used() + zmalloc_used_memory_tl + SmallString::UsedThreadLocal() +
|
|
search_indices()->GetUsedMemory();
|
|
}
|
|
|
|
BlockingController* EngineShard::EnsureBlockingController() {
|
|
if (!blocking_controller_) {
|
|
blocking_controller_.reset(new BlockingController(this));
|
|
}
|
|
|
|
return blocking_controller_.get();
|
|
}
|
|
|
|
void EngineShard::TEST_EnableHeartbeat() {
|
|
fiber_periodic_ = fb2::Fiber("shard_periodic_TEST", [this, period_ms = 1] {
|
|
RunPeriodic(std::chrono::milliseconds(period_ms));
|
|
});
|
|
}
|
|
|
|
auto EngineShard::AnalyzeTxQueue() const -> TxQueueInfo {
|
|
const TxQueue* queue = txq();
|
|
|
|
ShardId sid = shard_id();
|
|
TxQueueInfo info;
|
|
|
|
if (queue->Empty())
|
|
return info;
|
|
|
|
auto cur = queue->Head();
|
|
info.tx_total = queue->size();
|
|
unsigned max_db_id = 0;
|
|
|
|
do {
|
|
auto value = queue->At(cur);
|
|
Transaction* trx = std::get<Transaction*>(value);
|
|
// find maximum index of databases used by transactions
|
|
if (trx->GetDbIndex() > max_db_id) {
|
|
max_db_id = trx->GetDbIndex();
|
|
}
|
|
|
|
bool is_armed = trx->DEBUG_IsArmedInShard(sid);
|
|
DVLOG(1) << "Inspecting " << trx->DebugId() << " is_armed " << is_armed;
|
|
if (is_armed) {
|
|
info.tx_armed++;
|
|
|
|
if (trx->IsGlobal() || (trx->IsMulti() && trx->GetMultiMode() == Transaction::GLOBAL)) {
|
|
info.tx_global++;
|
|
} else {
|
|
const DbTable* table = db_slice().GetDBTable(trx->GetDbIndex());
|
|
bool can_run = !HasContendedLocks(sid, trx, table);
|
|
if (can_run) {
|
|
info.tx_runnable++;
|
|
}
|
|
}
|
|
}
|
|
cur = queue->Next(cur);
|
|
} while (cur != queue->Head());
|
|
|
|
// Analyze locks
|
|
for (unsigned i = 0; i <= max_db_id; ++i) {
|
|
const DbTable* table = db_slice().GetDBTable(i);
|
|
if (table == nullptr)
|
|
continue;
|
|
|
|
info.total_locks += table->trans_locks.Size();
|
|
for (const auto& [key, lock] : table->trans_locks) {
|
|
if (lock.IsContended()) {
|
|
info.contended_locks++;
|
|
if (lock.ContentionScore() > info.max_contention_score) {
|
|
info.max_contention_score = lock.ContentionScore();
|
|
info.max_contention_lock = key;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return info;
|
|
}
|
|
|
|
/**
|
|
|
|
|
|
_____ _ ____ _ _ ____ _
|
|
| ____| _ __ __ _ (_) _ __ ___ / ___| | |__ __ _ _ __ __| |/ ___| ___ | |_
|
|
| _| | '_ \ / _` || || '_ \ / _ \\___ \ | '_ \ / _` || '__|/ _` |\___ \ / _ \| __|
|
|
| |___ | | | || (_| || || | | || __/ ___) || | | || (_| || | | (_| | ___) || __/| |_
|
|
|_____||_| |_| \__, ||_||_| |_| \___||____/ |_| |_| \__,_||_| \__,_||____/ \___| \__|
|
|
|___/
|
|
|
|
*/
|
|
|
|
uint64_t GetFsLimit() {
|
|
std::filesystem::path file_path(GetFlag(FLAGS_tiered_prefix));
|
|
std::string dir_name_str = file_path.parent_path().string();
|
|
|
|
struct statvfs stat;
|
|
if (statvfs(dir_name_str.c_str(), &stat) == 0) {
|
|
uint64_t limit = stat.f_frsize * stat.f_blocks;
|
|
return limit;
|
|
}
|
|
LOG(WARNING) << "Error getting filesystem information";
|
|
return 0;
|
|
}
|
|
|
|
void EngineShardSet::Init(uint32_t sz, bool update_db_time) {
|
|
CHECK_EQ(0u, size());
|
|
cached_stats.resize(sz);
|
|
shard_queue_.resize(sz);
|
|
|
|
string file_prefix = GetFlag(FLAGS_tiered_prefix);
|
|
size_t max_shard_file_size = 0;
|
|
if (!file_prefix.empty()) {
|
|
size_t max_file_size = absl::GetFlag(FLAGS_tiered_max_file_size).value;
|
|
size_t max_file_size_limit = GetFsLimit();
|
|
if (max_file_size == 0) {
|
|
LOG(INFO) << "max_file_size has not been specified. Deciding myself....";
|
|
max_file_size = (max_file_size_limit * 0.8);
|
|
} else {
|
|
if (max_file_size_limit < max_file_size) {
|
|
LOG(WARNING) << "Got max file size " << HumanReadableNumBytes(max_file_size)
|
|
<< ", however only " << HumanReadableNumBytes(max_file_size_limit)
|
|
<< " disk space was found.";
|
|
}
|
|
}
|
|
max_shard_file_size = max_file_size / shard_queue_.size();
|
|
if (max_shard_file_size < 256_MB) {
|
|
LOG(ERROR) << "Max tiering file size is too small. Setting: "
|
|
<< HumanReadableNumBytes(max_file_size) << " Required at least "
|
|
<< HumanReadableNumBytes(256_MB * shard_queue_.size()) << ". Exiting..";
|
|
exit(1);
|
|
}
|
|
is_tiering_enabled_ = true;
|
|
LOG(INFO) << "Max file size is: " << HumanReadableNumBytes(max_file_size);
|
|
}
|
|
|
|
pp_->AwaitFiberOnAll([&](uint32_t index, ProactorBase* pb) {
|
|
if (index < shard_queue_.size()) {
|
|
InitThreadLocal(pb, update_db_time, max_shard_file_size);
|
|
}
|
|
});
|
|
}
|
|
|
|
void EngineShardSet::Shutdown() {
|
|
RunBlockingInParallel([](EngineShard*) { EngineShard::DestroyThreadLocal(); });
|
|
}
|
|
|
|
void EngineShardSet::InitThreadLocal(ProactorBase* pb, bool update_db_time, size_t max_file_size) {
|
|
EngineShard::InitThreadLocal(pb, update_db_time, max_file_size);
|
|
EngineShard* es = EngineShard::tlocal();
|
|
shard_queue_[es->shard_id()] = es->GetFiberQueue();
|
|
}
|
|
|
|
const vector<EngineShardSet::CachedStats>& EngineShardSet::GetCachedStats() {
|
|
return cached_stats;
|
|
}
|
|
|
|
void EngineShardSet::TEST_EnableHeartBeat() {
|
|
RunBriefInParallel([](EngineShard* shard) { shard->TEST_EnableHeartbeat(); });
|
|
}
|
|
|
|
void EngineShardSet::TEST_EnableCacheMode() {
|
|
RunBriefInParallel([](EngineShard* shard) { shard->db_slice().TEST_EnableCacheMode(); });
|
|
}
|
|
|
|
ShardId Shard(string_view v, ShardId shard_num) {
|
|
if (ClusterConfig::IsShardedByTag()) {
|
|
v = LockTagOptions::instance().Tag(v);
|
|
}
|
|
|
|
XXH64_hash_t hash = XXH64(v.data(), v.size(), 120577240643ULL);
|
|
|
|
if (RoundRobinSharder::IsEnabled()) {
|
|
auto round_robin = RoundRobinSharder::TryGetShardId(v, hash);
|
|
if (round_robin.has_value()) {
|
|
return *round_robin;
|
|
}
|
|
}
|
|
|
|
return hash % shard_num;
|
|
}
|
|
|
|
} // namespace dfly
|