lazygit/vendor/github.com/ProtonMail/go-crypto/openpgp/x448/x448.go
2025-04-09 11:23:55 +02:00

229 lines
7.5 KiB
Go

package x448
import (
"crypto/sha512"
"crypto/subtle"
"io"
"github.com/ProtonMail/go-crypto/openpgp/aes/keywrap"
"github.com/ProtonMail/go-crypto/openpgp/errors"
x448lib "github.com/cloudflare/circl/dh/x448"
"golang.org/x/crypto/hkdf"
)
const (
hkdfInfo = "OpenPGP X448"
aes256KeySize = 32
// The size of a public or private key in bytes.
KeySize = x448lib.Size
)
type PublicKey struct {
// Point represents the encoded elliptic curve point of the public key.
Point []byte
}
type PrivateKey struct {
PublicKey
// Secret represents the secret of the private key.
Secret []byte
}
// NewPrivateKey creates a new empty private key including the public key.
func NewPrivateKey(key PublicKey) *PrivateKey {
return &PrivateKey{
PublicKey: key,
}
}
// Validate validates that the provided public key matches
// the private key.
func Validate(pk *PrivateKey) (err error) {
var expectedPublicKey, privateKey x448lib.Key
subtle.ConstantTimeCopy(1, privateKey[:], pk.Secret)
x448lib.KeyGen(&expectedPublicKey, &privateKey)
if subtle.ConstantTimeCompare(expectedPublicKey[:], pk.PublicKey.Point) == 0 {
return errors.KeyInvalidError("x448: invalid key")
}
return nil
}
// GenerateKey generates a new x448 key pair.
func GenerateKey(rand io.Reader) (*PrivateKey, error) {
var privateKey, publicKey x448lib.Key
privateKeyOut := new(PrivateKey)
err := generateKey(rand, &privateKey, &publicKey)
if err != nil {
return nil, err
}
privateKeyOut.PublicKey.Point = publicKey[:]
privateKeyOut.Secret = privateKey[:]
return privateKeyOut, nil
}
func generateKey(rand io.Reader, privateKey *x448lib.Key, publicKey *x448lib.Key) error {
maxRounds := 10
isZero := true
for round := 0; isZero; round++ {
if round == maxRounds {
return errors.InvalidArgumentError("x448: zero keys only, randomness source might be corrupt")
}
_, err := io.ReadFull(rand, privateKey[:])
if err != nil {
return err
}
isZero = constantTimeIsZero(privateKey[:])
}
x448lib.KeyGen(publicKey, privateKey)
return nil
}
// Encrypt encrypts a sessionKey with x448 according to
// the OpenPGP crypto refresh specification section 5.1.7. The function assumes that the
// sessionKey has the correct format and padding according to the specification.
func Encrypt(rand io.Reader, publicKey *PublicKey, sessionKey []byte) (ephemeralPublicKey *PublicKey, encryptedSessionKey []byte, err error) {
var ephemeralPrivate, ephemeralPublic, staticPublic, shared x448lib.Key
// Check that the input static public key has 56 bytes.
if len(publicKey.Point) != KeySize {
err = errors.KeyInvalidError("x448: the public key has the wrong size")
return nil, nil, err
}
copy(staticPublic[:], publicKey.Point)
// Generate ephemeral keyPair.
if err = generateKey(rand, &ephemeralPrivate, &ephemeralPublic); err != nil {
return nil, nil, err
}
// Compute shared key.
ok := x448lib.Shared(&shared, &ephemeralPrivate, &staticPublic)
if !ok {
err = errors.KeyInvalidError("x448: the public key is a low order point")
return nil, nil, err
}
// Derive the encryption key from the shared secret.
encryptionKey := applyHKDF(ephemeralPublic[:], publicKey.Point[:], shared[:])
ephemeralPublicKey = &PublicKey{
Point: ephemeralPublic[:],
}
// Encrypt the sessionKey with aes key wrapping.
encryptedSessionKey, err = keywrap.Wrap(encryptionKey, sessionKey)
if err != nil {
return nil, nil, err
}
return ephemeralPublicKey, encryptedSessionKey, nil
}
// Decrypt decrypts a session key stored in ciphertext with the provided x448
// private key and ephemeral public key.
func Decrypt(privateKey *PrivateKey, ephemeralPublicKey *PublicKey, ciphertext []byte) (encodedSessionKey []byte, err error) {
var ephemeralPublic, staticPrivate, shared x448lib.Key
// Check that the input ephemeral public key has 56 bytes.
if len(ephemeralPublicKey.Point) != KeySize {
err = errors.KeyInvalidError("x448: the public key has the wrong size")
return nil, err
}
copy(ephemeralPublic[:], ephemeralPublicKey.Point)
subtle.ConstantTimeCopy(1, staticPrivate[:], privateKey.Secret)
// Compute shared key.
ok := x448lib.Shared(&shared, &staticPrivate, &ephemeralPublic)
if !ok {
err = errors.KeyInvalidError("x448: the ephemeral public key is a low order point")
return nil, err
}
// Derive the encryption key from the shared secret.
encryptionKey := applyHKDF(ephemeralPublicKey.Point[:], privateKey.PublicKey.Point[:], shared[:])
// Decrypt the session key with aes key wrapping.
encodedSessionKey, err = keywrap.Unwrap(encryptionKey, ciphertext)
if err != nil {
return nil, err
}
return encodedSessionKey, nil
}
func applyHKDF(ephemeralPublicKey []byte, publicKey []byte, sharedSecret []byte) []byte {
inputKey := make([]byte, 3*KeySize)
// ephemeral public key | recipient public key | shared secret.
subtle.ConstantTimeCopy(1, inputKey[:KeySize], ephemeralPublicKey)
subtle.ConstantTimeCopy(1, inputKey[KeySize:2*KeySize], publicKey)
subtle.ConstantTimeCopy(1, inputKey[2*KeySize:], sharedSecret)
hkdfReader := hkdf.New(sha512.New, inputKey, []byte{}, []byte(hkdfInfo))
encryptionKey := make([]byte, aes256KeySize)
_, _ = io.ReadFull(hkdfReader, encryptionKey)
return encryptionKey
}
func constantTimeIsZero(bytes []byte) bool {
isZero := byte(0)
for _, b := range bytes {
isZero |= b
}
return isZero == 0
}
// ENCODING/DECODING ciphertexts:
// EncodeFieldsLength returns the length of the ciphertext encoding
// given the encrypted session key.
func EncodedFieldsLength(encryptedSessionKey []byte, v6 bool) int {
lenCipherFunction := 0
if !v6 {
lenCipherFunction = 1
}
return KeySize + 1 + len(encryptedSessionKey) + lenCipherFunction
}
// EncodeField encodes x448 session key encryption fields as
// ephemeral x448 public key | follow byte length | cipherFunction (v3 only) | encryptedSessionKey
// and writes it to writer.
func EncodeFields(writer io.Writer, ephemeralPublicKey *PublicKey, encryptedSessionKey []byte, cipherFunction byte, v6 bool) (err error) {
lenAlgorithm := 0
if !v6 {
lenAlgorithm = 1
}
if _, err = writer.Write(ephemeralPublicKey.Point); err != nil {
return err
}
if _, err = writer.Write([]byte{byte(len(encryptedSessionKey) + lenAlgorithm)}); err != nil {
return err
}
if !v6 {
if _, err = writer.Write([]byte{cipherFunction}); err != nil {
return err
}
}
if _, err = writer.Write(encryptedSessionKey); err != nil {
return err
}
return nil
}
// DecodeField decodes a x448 session key encryption as
// ephemeral x448 public key | follow byte length | cipherFunction (v3 only) | encryptedSessionKey.
func DecodeFields(reader io.Reader, v6 bool) (ephemeralPublicKey *PublicKey, encryptedSessionKey []byte, cipherFunction byte, err error) {
var buf [1]byte
ephemeralPublicKey = &PublicKey{
Point: make([]byte, KeySize),
}
// 56 octets representing an ephemeral x448 public key.
if _, err = io.ReadFull(reader, ephemeralPublicKey.Point); err != nil {
return nil, nil, 0, err
}
// A one-octet size of the following fields.
if _, err = io.ReadFull(reader, buf[:]); err != nil {
return nil, nil, 0, err
}
followingLen := buf[0]
// The one-octet algorithm identifier, if it was passed (in the case of a v3 PKESK packet).
if !v6 {
if _, err = io.ReadFull(reader, buf[:]); err != nil {
return nil, nil, 0, err
}
cipherFunction = buf[0]
followingLen -= 1
}
// The encrypted session key.
encryptedSessionKey = make([]byte, followingLen)
if _, err = io.ReadFull(reader, encryptedSessionKey); err != nil {
return nil, nil, 0, err
}
return ephemeralPublicKey, encryptedSessionKey, cipherFunction, nil
}