lazygit/vendor/github.com/ProtonMail/go-crypto/openpgp/packet/signature.go
2025-04-09 11:23:55 +02:00

1511 lines
46 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/dsa"
"encoding/asn1"
"encoding/binary"
"hash"
"io"
"math/big"
"strconv"
"time"
"github.com/ProtonMail/go-crypto/openpgp/ecdsa"
"github.com/ProtonMail/go-crypto/openpgp/ed25519"
"github.com/ProtonMail/go-crypto/openpgp/ed448"
"github.com/ProtonMail/go-crypto/openpgp/eddsa"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
"github.com/ProtonMail/go-crypto/openpgp/internal/encoding"
)
const (
// First octet of key flags.
// See RFC 9580, section 5.2.3.29 for details.
KeyFlagCertify = 1 << iota
KeyFlagSign
KeyFlagEncryptCommunications
KeyFlagEncryptStorage
KeyFlagSplitKey
KeyFlagAuthenticate
_
KeyFlagGroupKey
)
const (
// First octet of keyserver preference flags.
// See RFC 9580, section 5.2.3.25 for details.
_ = 1 << iota
_
_
_
_
_
_
KeyserverPrefNoModify
)
const SaltNotationName = "salt@notations.openpgpjs.org"
// Signature represents a signature. See RFC 9580, section 5.2.
type Signature struct {
Version int
SigType SignatureType
PubKeyAlgo PublicKeyAlgorithm
Hash crypto.Hash
// salt contains a random salt value for v6 signatures
// See RFC 9580 Section 5.2.4.
salt []byte
// HashSuffix is extra data that is hashed in after the signed data.
HashSuffix []byte
// HashTag contains the first two bytes of the hash for fast rejection
// of bad signed data.
HashTag [2]byte
// Metadata includes format, filename and time, and is protected by v5
// signatures of type 0x00 or 0x01. This metadata is included into the hash
// computation; if nil, six 0x00 bytes are used instead. See section 5.2.4.
Metadata *LiteralData
CreationTime time.Time
RSASignature encoding.Field
DSASigR, DSASigS encoding.Field
ECDSASigR, ECDSASigS encoding.Field
EdDSASigR, EdDSASigS encoding.Field
EdSig []byte
// rawSubpackets contains the unparsed subpackets, in order.
rawSubpackets []outputSubpacket
// The following are optional so are nil when not included in the
// signature.
SigLifetimeSecs, KeyLifetimeSecs *uint32
PreferredSymmetric, PreferredHash, PreferredCompression []uint8
PreferredCipherSuites [][2]uint8
IssuerKeyId *uint64
IssuerFingerprint []byte
SignerUserId *string
IsPrimaryId *bool
Notations []*Notation
IntendedRecipients []*Recipient
// TrustLevel and TrustAmount can be set by the signer to assert that
// the key is not only valid but also trustworthy at the specified
// level.
// See RFC 9580, section 5.2.3.21 for details.
TrustLevel TrustLevel
TrustAmount TrustAmount
// TrustRegularExpression can be used in conjunction with trust Signature
// packets to limit the scope of the trust that is extended.
// See RFC 9580, section 5.2.3.22 for details.
TrustRegularExpression *string
// KeyserverPrefsValid is set if any keyserver preferences were given. See RFC 9580, section
// 5.2.3.25 for details.
KeyserverPrefsValid bool
KeyserverPrefNoModify bool
// PreferredKeyserver can be set to a URI where the latest version of the
// key that this signature is made over can be found. See RFC 9580, section
// 5.2.3.26 for details.
PreferredKeyserver string
// PolicyURI can be set to the URI of a document that describes the
// policy under which the signature was issued. See RFC 9580, section
// 5.2.3.28 for details.
PolicyURI string
// FlagsValid is set if any flags were given. See RFC 9580, section
// 5.2.3.29 for details.
FlagsValid bool
FlagCertify, FlagSign, FlagEncryptCommunications, FlagEncryptStorage, FlagSplitKey, FlagAuthenticate, FlagGroupKey bool
// RevocationReason is set if this signature has been revoked.
// See RFC 9580, section 5.2.3.31 for details.
RevocationReason *ReasonForRevocation
RevocationReasonText string
// In a self-signature, these flags are set there is a features subpacket
// indicating that the issuer implementation supports these features
// see https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh#features-subpacket
SEIPDv1, SEIPDv2 bool
// EmbeddedSignature, if non-nil, is a signature of the parent key, by
// this key. This prevents an attacker from claiming another's signing
// subkey as their own.
EmbeddedSignature *Signature
outSubpackets []outputSubpacket
}
// VerifiableSignature internally keeps state if the
// the signature has been verified before.
type VerifiableSignature struct {
Valid *bool // nil if it has not been verified yet
Packet *Signature
}
// NewVerifiableSig returns a struct of type VerifiableSignature referencing the input signature.
func NewVerifiableSig(signature *Signature) *VerifiableSignature {
return &VerifiableSignature{
Packet: signature,
}
}
// Salt returns the signature salt for v6 signatures.
func (sig *Signature) Salt() []byte {
if sig == nil {
return nil
}
return sig.salt
}
func (sig *Signature) parse(r io.Reader) (err error) {
// RFC 9580, section 5.2.3
var buf [7]byte
_, err = readFull(r, buf[:1])
if err != nil {
return
}
sig.Version = int(buf[0])
if sig.Version != 4 && sig.Version != 5 && sig.Version != 6 {
err = errors.UnsupportedError("signature packet version " + strconv.Itoa(int(buf[0])))
return
}
if V5Disabled && sig.Version == 5 {
return errors.UnsupportedError("support for parsing v5 entities is disabled; build with `-tags v5` if needed")
}
if sig.Version == 6 {
_, err = readFull(r, buf[:7])
} else {
_, err = readFull(r, buf[:5])
}
if err != nil {
return
}
sig.SigType = SignatureType(buf[0])
sig.PubKeyAlgo = PublicKeyAlgorithm(buf[1])
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA, PubKeyAlgoEdDSA, PubKeyAlgoEd25519, PubKeyAlgoEd448:
default:
err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo)))
return
}
var ok bool
if sig.Version < 5 {
sig.Hash, ok = algorithm.HashIdToHashWithSha1(buf[2])
} else {
sig.Hash, ok = algorithm.HashIdToHash(buf[2])
}
if !ok {
return errors.UnsupportedError("hash function " + strconv.Itoa(int(buf[2])))
}
var hashedSubpacketsLength int
if sig.Version == 6 {
// For a v6 signature, a four-octet length is used.
hashedSubpacketsLength =
int(buf[3])<<24 |
int(buf[4])<<16 |
int(buf[5])<<8 |
int(buf[6])
} else {
hashedSubpacketsLength = int(buf[3])<<8 | int(buf[4])
}
hashedSubpackets := make([]byte, hashedSubpacketsLength)
_, err = readFull(r, hashedSubpackets)
if err != nil {
return
}
err = sig.buildHashSuffix(hashedSubpackets)
if err != nil {
return
}
err = parseSignatureSubpackets(sig, hashedSubpackets, true)
if err != nil {
return
}
if sig.Version == 6 {
_, err = readFull(r, buf[:4])
} else {
_, err = readFull(r, buf[:2])
}
if err != nil {
return
}
var unhashedSubpacketsLength uint32
if sig.Version == 6 {
unhashedSubpacketsLength = uint32(buf[0])<<24 | uint32(buf[1])<<16 | uint32(buf[2])<<8 | uint32(buf[3])
} else {
unhashedSubpacketsLength = uint32(buf[0])<<8 | uint32(buf[1])
}
unhashedSubpackets := make([]byte, unhashedSubpacketsLength)
_, err = readFull(r, unhashedSubpackets)
if err != nil {
return
}
err = parseSignatureSubpackets(sig, unhashedSubpackets, false)
if err != nil {
return
}
_, err = readFull(r, sig.HashTag[:2])
if err != nil {
return
}
if sig.Version == 6 {
// Only for v6 signatures, a variable-length field containing the salt
_, err = readFull(r, buf[:1])
if err != nil {
return
}
saltLength := int(buf[0])
var expectedSaltLength int
expectedSaltLength, err = SaltLengthForHash(sig.Hash)
if err != nil {
return
}
if saltLength != expectedSaltLength {
err = errors.StructuralError("unexpected salt size for the given hash algorithm")
return
}
salt := make([]byte, expectedSaltLength)
_, err = readFull(r, salt)
if err != nil {
return
}
sig.salt = salt
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sig.RSASignature = new(encoding.MPI)
_, err = sig.RSASignature.ReadFrom(r)
case PubKeyAlgoDSA:
sig.DSASigR = new(encoding.MPI)
if _, err = sig.DSASigR.ReadFrom(r); err != nil {
return
}
sig.DSASigS = new(encoding.MPI)
_, err = sig.DSASigS.ReadFrom(r)
case PubKeyAlgoECDSA:
sig.ECDSASigR = new(encoding.MPI)
if _, err = sig.ECDSASigR.ReadFrom(r); err != nil {
return
}
sig.ECDSASigS = new(encoding.MPI)
_, err = sig.ECDSASigS.ReadFrom(r)
case PubKeyAlgoEdDSA:
sig.EdDSASigR = new(encoding.MPI)
if _, err = sig.EdDSASigR.ReadFrom(r); err != nil {
return
}
sig.EdDSASigS = new(encoding.MPI)
if _, err = sig.EdDSASigS.ReadFrom(r); err != nil {
return
}
case PubKeyAlgoEd25519:
sig.EdSig, err = ed25519.ReadSignature(r)
if err != nil {
return
}
case PubKeyAlgoEd448:
sig.EdSig, err = ed448.ReadSignature(r)
if err != nil {
return
}
default:
panic("unreachable")
}
return
}
// parseSignatureSubpackets parses subpackets of the main signature packet. See
// RFC 9580, section 5.2.3.1.
func parseSignatureSubpackets(sig *Signature, subpackets []byte, isHashed bool) (err error) {
for len(subpackets) > 0 {
subpackets, err = parseSignatureSubpacket(sig, subpackets, isHashed)
if err != nil {
return
}
}
if sig.CreationTime.IsZero() {
err = errors.StructuralError("no creation time in signature")
}
return
}
type signatureSubpacketType uint8
const (
creationTimeSubpacket signatureSubpacketType = 2
signatureExpirationSubpacket signatureSubpacketType = 3
exportableCertSubpacket signatureSubpacketType = 4
trustSubpacket signatureSubpacketType = 5
regularExpressionSubpacket signatureSubpacketType = 6
keyExpirationSubpacket signatureSubpacketType = 9
prefSymmetricAlgosSubpacket signatureSubpacketType = 11
issuerSubpacket signatureSubpacketType = 16
notationDataSubpacket signatureSubpacketType = 20
prefHashAlgosSubpacket signatureSubpacketType = 21
prefCompressionSubpacket signatureSubpacketType = 22
keyserverPrefsSubpacket signatureSubpacketType = 23
prefKeyserverSubpacket signatureSubpacketType = 24
primaryUserIdSubpacket signatureSubpacketType = 25
policyUriSubpacket signatureSubpacketType = 26
keyFlagsSubpacket signatureSubpacketType = 27
signerUserIdSubpacket signatureSubpacketType = 28
reasonForRevocationSubpacket signatureSubpacketType = 29
featuresSubpacket signatureSubpacketType = 30
embeddedSignatureSubpacket signatureSubpacketType = 32
issuerFingerprintSubpacket signatureSubpacketType = 33
intendedRecipientSubpacket signatureSubpacketType = 35
prefCipherSuitesSubpacket signatureSubpacketType = 39
)
// parseSignatureSubpacket parses a single subpacket. len(subpacket) is >= 1.
func parseSignatureSubpacket(sig *Signature, subpacket []byte, isHashed bool) (rest []byte, err error) {
// RFC 9580, section 5.2.3.7
var (
length uint32
packetType signatureSubpacketType
isCritical bool
)
if len(subpacket) == 0 {
err = errors.StructuralError("zero length signature subpacket")
return
}
switch {
case subpacket[0] < 192:
length = uint32(subpacket[0])
subpacket = subpacket[1:]
case subpacket[0] < 255:
if len(subpacket) < 2 {
goto Truncated
}
length = uint32(subpacket[0]-192)<<8 + uint32(subpacket[1]) + 192
subpacket = subpacket[2:]
default:
if len(subpacket) < 5 {
goto Truncated
}
length = uint32(subpacket[1])<<24 |
uint32(subpacket[2])<<16 |
uint32(subpacket[3])<<8 |
uint32(subpacket[4])
subpacket = subpacket[5:]
}
if length > uint32(len(subpacket)) {
goto Truncated
}
rest = subpacket[length:]
subpacket = subpacket[:length]
if len(subpacket) == 0 {
err = errors.StructuralError("zero length signature subpacket")
return
}
packetType = signatureSubpacketType(subpacket[0] & 0x7f)
isCritical = subpacket[0]&0x80 == 0x80
subpacket = subpacket[1:]
sig.rawSubpackets = append(sig.rawSubpackets, outputSubpacket{isHashed, packetType, isCritical, subpacket})
if !isHashed &&
packetType != issuerSubpacket &&
packetType != issuerFingerprintSubpacket &&
packetType != embeddedSignatureSubpacket {
return
}
switch packetType {
case creationTimeSubpacket:
if len(subpacket) != 4 {
err = errors.StructuralError("signature creation time not four bytes")
return
}
t := binary.BigEndian.Uint32(subpacket)
sig.CreationTime = time.Unix(int64(t), 0)
case signatureExpirationSubpacket:
// Signature expiration time, section 5.2.3.18
if len(subpacket) != 4 {
err = errors.StructuralError("expiration subpacket with bad length")
return
}
sig.SigLifetimeSecs = new(uint32)
*sig.SigLifetimeSecs = binary.BigEndian.Uint32(subpacket)
case exportableCertSubpacket:
if subpacket[0] == 0 {
err = errors.UnsupportedError("signature with non-exportable certification")
return
}
case trustSubpacket:
if len(subpacket) != 2 {
err = errors.StructuralError("trust subpacket with bad length")
return
}
// Trust level and amount, section 5.2.3.21
sig.TrustLevel = TrustLevel(subpacket[0])
sig.TrustAmount = TrustAmount(subpacket[1])
case regularExpressionSubpacket:
if len(subpacket) == 0 {
err = errors.StructuralError("regexp subpacket with bad length")
return
}
// Trust regular expression, section 5.2.3.22
// RFC specifies the string should be null-terminated; remove a null byte from the end
if subpacket[len(subpacket)-1] != 0x00 {
err = errors.StructuralError("expected regular expression to be null-terminated")
return
}
trustRegularExpression := string(subpacket[:len(subpacket)-1])
sig.TrustRegularExpression = &trustRegularExpression
case keyExpirationSubpacket:
// Key expiration time, section 5.2.3.13
if len(subpacket) != 4 {
err = errors.StructuralError("key expiration subpacket with bad length")
return
}
sig.KeyLifetimeSecs = new(uint32)
*sig.KeyLifetimeSecs = binary.BigEndian.Uint32(subpacket)
case prefSymmetricAlgosSubpacket:
// Preferred symmetric algorithms, section 5.2.3.14
sig.PreferredSymmetric = make([]byte, len(subpacket))
copy(sig.PreferredSymmetric, subpacket)
case issuerSubpacket:
// Issuer, section 5.2.3.12
if sig.Version > 4 && isHashed {
err = errors.StructuralError("issuer subpacket found in v6 key")
return
}
if len(subpacket) != 8 {
err = errors.StructuralError("issuer subpacket with bad length")
return
}
if sig.Version <= 4 {
sig.IssuerKeyId = new(uint64)
*sig.IssuerKeyId = binary.BigEndian.Uint64(subpacket)
}
case notationDataSubpacket:
// Notation data, section 5.2.3.24
if len(subpacket) < 8 {
err = errors.StructuralError("notation data subpacket with bad length")
return
}
nameLength := uint32(subpacket[4])<<8 | uint32(subpacket[5])
valueLength := uint32(subpacket[6])<<8 | uint32(subpacket[7])
if len(subpacket) != int(nameLength)+int(valueLength)+8 {
err = errors.StructuralError("notation data subpacket with bad length")
return
}
notation := Notation{
IsHumanReadable: (subpacket[0] & 0x80) == 0x80,
Name: string(subpacket[8:(nameLength + 8)]),
Value: subpacket[(nameLength + 8):(valueLength + nameLength + 8)],
IsCritical: isCritical,
}
sig.Notations = append(sig.Notations, &notation)
case prefHashAlgosSubpacket:
// Preferred hash algorithms, section 5.2.3.16
sig.PreferredHash = make([]byte, len(subpacket))
copy(sig.PreferredHash, subpacket)
case prefCompressionSubpacket:
// Preferred compression algorithms, section 5.2.3.17
sig.PreferredCompression = make([]byte, len(subpacket))
copy(sig.PreferredCompression, subpacket)
case keyserverPrefsSubpacket:
// Keyserver preferences, section 5.2.3.25
sig.KeyserverPrefsValid = true
if len(subpacket) == 0 {
return
}
if subpacket[0]&KeyserverPrefNoModify != 0 {
sig.KeyserverPrefNoModify = true
}
case prefKeyserverSubpacket:
// Preferred keyserver, section 5.2.3.26
sig.PreferredKeyserver = string(subpacket)
case primaryUserIdSubpacket:
// Primary User ID, section 5.2.3.27
if len(subpacket) != 1 {
err = errors.StructuralError("primary user id subpacket with bad length")
return
}
sig.IsPrimaryId = new(bool)
if subpacket[0] > 0 {
*sig.IsPrimaryId = true
}
case keyFlagsSubpacket:
// Key flags, section 5.2.3.29
sig.FlagsValid = true
if len(subpacket) == 0 {
return
}
if subpacket[0]&KeyFlagCertify != 0 {
sig.FlagCertify = true
}
if subpacket[0]&KeyFlagSign != 0 {
sig.FlagSign = true
}
if subpacket[0]&KeyFlagEncryptCommunications != 0 {
sig.FlagEncryptCommunications = true
}
if subpacket[0]&KeyFlagEncryptStorage != 0 {
sig.FlagEncryptStorage = true
}
if subpacket[0]&KeyFlagSplitKey != 0 {
sig.FlagSplitKey = true
}
if subpacket[0]&KeyFlagAuthenticate != 0 {
sig.FlagAuthenticate = true
}
if subpacket[0]&KeyFlagGroupKey != 0 {
sig.FlagGroupKey = true
}
case signerUserIdSubpacket:
userId := string(subpacket)
sig.SignerUserId = &userId
case reasonForRevocationSubpacket:
// Reason For Revocation, section 5.2.3.31
if len(subpacket) == 0 {
err = errors.StructuralError("empty revocation reason subpacket")
return
}
sig.RevocationReason = new(ReasonForRevocation)
*sig.RevocationReason = NewReasonForRevocation(subpacket[0])
sig.RevocationReasonText = string(subpacket[1:])
case featuresSubpacket:
// Features subpacket, section 5.2.3.32 specifies a very general
// mechanism for OpenPGP implementations to signal support for new
// features.
if len(subpacket) > 0 {
if subpacket[0]&0x01 != 0 {
sig.SEIPDv1 = true
}
// 0x02 and 0x04 are reserved
if subpacket[0]&0x08 != 0 {
sig.SEIPDv2 = true
}
}
case embeddedSignatureSubpacket:
// Only usage is in signatures that cross-certify
// signing subkeys. section 5.2.3.34 describes the
// format, with its usage described in section 11.1
if sig.EmbeddedSignature != nil {
err = errors.StructuralError("Cannot have multiple embedded signatures")
return
}
sig.EmbeddedSignature = new(Signature)
if err := sig.EmbeddedSignature.parse(bytes.NewBuffer(subpacket)); err != nil {
return nil, err
}
if sigType := sig.EmbeddedSignature.SigType; sigType != SigTypePrimaryKeyBinding {
return nil, errors.StructuralError("cross-signature has unexpected type " + strconv.Itoa(int(sigType)))
}
case policyUriSubpacket:
// Policy URI, section 5.2.3.28
sig.PolicyURI = string(subpacket)
case issuerFingerprintSubpacket:
if len(subpacket) == 0 {
err = errors.StructuralError("empty issuer fingerprint subpacket")
return
}
v, l := subpacket[0], len(subpacket[1:])
if v >= 5 && l != 32 || v < 5 && l != 20 {
return nil, errors.StructuralError("bad fingerprint length")
}
sig.IssuerFingerprint = make([]byte, l)
copy(sig.IssuerFingerprint, subpacket[1:])
sig.IssuerKeyId = new(uint64)
if v >= 5 {
*sig.IssuerKeyId = binary.BigEndian.Uint64(subpacket[1:9])
} else {
*sig.IssuerKeyId = binary.BigEndian.Uint64(subpacket[13:21])
}
case intendedRecipientSubpacket:
// Intended Recipient Fingerprint, section 5.2.3.36
if len(subpacket) < 1 {
return nil, errors.StructuralError("invalid intended recipient fingerpring length")
}
version, length := subpacket[0], len(subpacket[1:])
if version >= 5 && length != 32 || version < 5 && length != 20 {
return nil, errors.StructuralError("invalid fingerprint length")
}
fingerprint := make([]byte, length)
copy(fingerprint, subpacket[1:])
sig.IntendedRecipients = append(sig.IntendedRecipients, &Recipient{int(version), fingerprint})
case prefCipherSuitesSubpacket:
// Preferred AEAD cipher suites, section 5.2.3.15
if len(subpacket)%2 != 0 {
err = errors.StructuralError("invalid aead cipher suite length")
return
}
sig.PreferredCipherSuites = make([][2]byte, len(subpacket)/2)
for i := 0; i < len(subpacket)/2; i++ {
sig.PreferredCipherSuites[i] = [2]uint8{subpacket[2*i], subpacket[2*i+1]}
}
default:
if isCritical {
err = errors.UnsupportedError("unknown critical signature subpacket type " + strconv.Itoa(int(packetType)))
return
}
}
return
Truncated:
err = errors.StructuralError("signature subpacket truncated")
return
}
// subpacketLengthLength returns the length, in bytes, of an encoded length value.
func subpacketLengthLength(length int) int {
if length < 192 {
return 1
}
if length < 16320 {
return 2
}
return 5
}
func (sig *Signature) CheckKeyIdOrFingerprint(pk *PublicKey) bool {
if sig.IssuerFingerprint != nil && len(sig.IssuerFingerprint) >= 20 {
return bytes.Equal(sig.IssuerFingerprint, pk.Fingerprint)
}
return sig.IssuerKeyId != nil && *sig.IssuerKeyId == pk.KeyId
}
func (sig *Signature) CheckKeyIdOrFingerprintExplicit(fingerprint []byte, keyId uint64) bool {
if sig.IssuerFingerprint != nil && len(sig.IssuerFingerprint) >= 20 && fingerprint != nil {
return bytes.Equal(sig.IssuerFingerprint, fingerprint)
}
return sig.IssuerKeyId != nil && *sig.IssuerKeyId == keyId
}
// serializeSubpacketLength marshals the given length into to.
func serializeSubpacketLength(to []byte, length int) int {
// RFC 9580, Section 4.2.1.
if length < 192 {
to[0] = byte(length)
return 1
}
if length < 16320 {
length -= 192
to[0] = byte((length >> 8) + 192)
to[1] = byte(length)
return 2
}
to[0] = 255
to[1] = byte(length >> 24)
to[2] = byte(length >> 16)
to[3] = byte(length >> 8)
to[4] = byte(length)
return 5
}
// subpacketsLength returns the serialized length, in bytes, of the given
// subpackets.
func subpacketsLength(subpackets []outputSubpacket, hashed bool) (length int) {
for _, subpacket := range subpackets {
if subpacket.hashed == hashed {
length += subpacketLengthLength(len(subpacket.contents) + 1)
length += 1 // type byte
length += len(subpacket.contents)
}
}
return
}
// serializeSubpackets marshals the given subpackets into to.
func serializeSubpackets(to []byte, subpackets []outputSubpacket, hashed bool) {
for _, subpacket := range subpackets {
if subpacket.hashed == hashed {
n := serializeSubpacketLength(to, len(subpacket.contents)+1)
to[n] = byte(subpacket.subpacketType)
if subpacket.isCritical {
to[n] |= 0x80
}
to = to[1+n:]
n = copy(to, subpacket.contents)
to = to[n:]
}
}
}
// SigExpired returns whether sig is a signature that has expired or is created
// in the future.
func (sig *Signature) SigExpired(currentTime time.Time) bool {
if sig.CreationTime.Unix() > currentTime.Unix() {
return true
}
if sig.SigLifetimeSecs == nil || *sig.SigLifetimeSecs == 0 {
return false
}
expiry := sig.CreationTime.Add(time.Duration(*sig.SigLifetimeSecs) * time.Second)
return currentTime.Unix() > expiry.Unix()
}
// buildHashSuffix constructs the HashSuffix member of sig in preparation for signing.
func (sig *Signature) buildHashSuffix(hashedSubpackets []byte) (err error) {
var hashId byte
var ok bool
if sig.Version < 5 {
hashId, ok = algorithm.HashToHashIdWithSha1(sig.Hash)
} else {
hashId, ok = algorithm.HashToHashId(sig.Hash)
}
if !ok {
sig.HashSuffix = nil
return errors.InvalidArgumentError("hash cannot be represented in OpenPGP: " + strconv.Itoa(int(sig.Hash)))
}
hashedFields := bytes.NewBuffer([]byte{
uint8(sig.Version),
uint8(sig.SigType),
uint8(sig.PubKeyAlgo),
uint8(hashId),
})
hashedSubpacketsLength := len(hashedSubpackets)
if sig.Version == 6 {
// v6 signatures store the length in 4 octets
hashedFields.Write([]byte{
uint8(hashedSubpacketsLength >> 24),
uint8(hashedSubpacketsLength >> 16),
uint8(hashedSubpacketsLength >> 8),
uint8(hashedSubpacketsLength),
})
} else {
hashedFields.Write([]byte{
uint8(hashedSubpacketsLength >> 8),
uint8(hashedSubpacketsLength),
})
}
lenPrefix := hashedFields.Len()
hashedFields.Write(hashedSubpackets)
var l uint64 = uint64(lenPrefix + len(hashedSubpackets))
if sig.Version == 5 {
// v5 case
hashedFields.Write([]byte{0x05, 0xff})
hashedFields.Write([]byte{
uint8(l >> 56), uint8(l >> 48), uint8(l >> 40), uint8(l >> 32),
uint8(l >> 24), uint8(l >> 16), uint8(l >> 8), uint8(l),
})
} else {
// v4 and v6 case
hashedFields.Write([]byte{byte(sig.Version), 0xff})
hashedFields.Write([]byte{
uint8(l >> 24), uint8(l >> 16), uint8(l >> 8), uint8(l),
})
}
sig.HashSuffix = make([]byte, hashedFields.Len())
copy(sig.HashSuffix, hashedFields.Bytes())
return
}
func (sig *Signature) signPrepareHash(h hash.Hash) (digest []byte, err error) {
hashedSubpacketsLen := subpacketsLength(sig.outSubpackets, true)
hashedSubpackets := make([]byte, hashedSubpacketsLen)
serializeSubpackets(hashedSubpackets, sig.outSubpackets, true)
err = sig.buildHashSuffix(hashedSubpackets)
if err != nil {
return
}
if sig.Version == 5 && (sig.SigType == 0x00 || sig.SigType == 0x01) {
sig.AddMetadataToHashSuffix()
}
h.Write(sig.HashSuffix)
digest = h.Sum(nil)
copy(sig.HashTag[:], digest)
return
}
// PrepareSign must be called to create a hash object before Sign for v6 signatures.
// The created hash object initially hashes a randomly generated salt
// as required by v6 signatures. The generated salt is stored in sig. If the signature is not v6,
// the method returns an empty hash object.
// See RFC 9580 Section 5.2.4.
func (sig *Signature) PrepareSign(config *Config) (hash.Hash, error) {
if !sig.Hash.Available() {
return nil, errors.UnsupportedError("hash function")
}
hasher := sig.Hash.New()
if sig.Version == 6 {
if sig.salt == nil {
var err error
sig.salt, err = SignatureSaltForHash(sig.Hash, config.Random())
if err != nil {
return nil, err
}
}
hasher.Write(sig.salt)
}
return hasher, nil
}
// SetSalt sets the signature salt for v6 signatures.
// Assumes salt is generated correctly and checks if length matches.
// If the signature is not v6, the method ignores the salt.
// Use PrepareSign whenever possible instead of generating and
// hashing the salt externally.
// See RFC 9580 Section 5.2.4.
func (sig *Signature) SetSalt(salt []byte) error {
if sig.Version == 6 {
expectedSaltLength, err := SaltLengthForHash(sig.Hash)
if err != nil {
return err
}
if salt == nil || len(salt) != expectedSaltLength {
return errors.InvalidArgumentError("unexpected salt size for the given hash algorithm")
}
sig.salt = salt
}
return nil
}
// PrepareVerify must be called to create a hash object before verifying v6 signatures.
// The created hash object initially hashes the internally stored salt.
// If the signature is not v6, the method returns an empty hash object.
// See RFC 9580 Section 5.2.4.
func (sig *Signature) PrepareVerify() (hash.Hash, error) {
if !sig.Hash.Available() {
return nil, errors.UnsupportedError("hash function")
}
hasher := sig.Hash.New()
if sig.Version == 6 {
if sig.salt == nil {
return nil, errors.StructuralError("v6 requires a salt for the hash to be signed")
}
hasher.Write(sig.salt)
}
return hasher, nil
}
// Sign signs a message with a private key. The hash, h, must contain
// the hash of the message to be signed and will be mutated by this function.
// On success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) Sign(h hash.Hash, priv *PrivateKey, config *Config) (err error) {
if priv.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
sig.Version = priv.PublicKey.Version
sig.IssuerFingerprint = priv.PublicKey.Fingerprint
if sig.Version < 6 && config.RandomizeSignaturesViaNotation() {
sig.removeNotationsWithName(SaltNotationName)
salt, err := SignatureSaltForHash(sig.Hash, config.Random())
if err != nil {
return err
}
notation := Notation{
Name: SaltNotationName,
Value: salt,
IsCritical: false,
IsHumanReadable: false,
}
sig.Notations = append(sig.Notations, &notation)
}
sig.outSubpackets, err = sig.buildSubpackets(priv.PublicKey)
if err != nil {
return err
}
digest, err := sig.signPrepareHash(h)
if err != nil {
return
}
switch priv.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
// supports both *rsa.PrivateKey and crypto.Signer
sigdata, err := priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, sig.Hash)
if err == nil {
sig.RSASignature = encoding.NewMPI(sigdata)
}
case PubKeyAlgoDSA:
dsaPriv := priv.PrivateKey.(*dsa.PrivateKey)
// Need to truncate hashBytes to match FIPS 186-3 section 4.6.
subgroupSize := (dsaPriv.Q.BitLen() + 7) / 8
if len(digest) > subgroupSize {
digest = digest[:subgroupSize]
}
r, s, err := dsa.Sign(config.Random(), dsaPriv, digest)
if err == nil {
sig.DSASigR = new(encoding.MPI).SetBig(r)
sig.DSASigS = new(encoding.MPI).SetBig(s)
}
case PubKeyAlgoECDSA:
var r, s *big.Int
if sk, ok := priv.PrivateKey.(*ecdsa.PrivateKey); ok {
r, s, err = ecdsa.Sign(config.Random(), sk, digest)
} else {
var b []byte
b, err = priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, sig.Hash)
if err == nil {
r, s, err = unwrapECDSASig(b)
}
}
if err == nil {
sig.ECDSASigR = new(encoding.MPI).SetBig(r)
sig.ECDSASigS = new(encoding.MPI).SetBig(s)
}
case PubKeyAlgoEdDSA:
sk := priv.PrivateKey.(*eddsa.PrivateKey)
r, s, err := eddsa.Sign(sk, digest)
if err == nil {
sig.EdDSASigR = encoding.NewMPI(r)
sig.EdDSASigS = encoding.NewMPI(s)
}
case PubKeyAlgoEd25519:
sk := priv.PrivateKey.(*ed25519.PrivateKey)
signature, err := ed25519.Sign(sk, digest)
if err == nil {
sig.EdSig = signature
}
case PubKeyAlgoEd448:
sk := priv.PrivateKey.(*ed448.PrivateKey)
signature, err := ed448.Sign(sk, digest)
if err == nil {
sig.EdSig = signature
}
default:
err = errors.UnsupportedError("public key algorithm: " + strconv.Itoa(int(sig.PubKeyAlgo)))
}
return
}
// unwrapECDSASig parses the two integer components of an ASN.1-encoded ECDSA signature.
func unwrapECDSASig(b []byte) (r, s *big.Int, err error) {
var ecsdaSig struct {
R, S *big.Int
}
_, err = asn1.Unmarshal(b, &ecsdaSig)
if err != nil {
return
}
return ecsdaSig.R, ecsdaSig.S, nil
}
// SignUserId computes a signature from priv, asserting that pub is a valid
// key for the identity id. On success, the signature is stored in sig. Call
// Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) SignUserId(id string, pub *PublicKey, priv *PrivateKey, config *Config) error {
if priv.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
prepareHash, err := sig.PrepareSign(config)
if err != nil {
return err
}
if err := userIdSignatureHash(id, pub, prepareHash); err != nil {
return err
}
return sig.Sign(prepareHash, priv, config)
}
// SignDirectKeyBinding computes a signature from priv
// On success, the signature is stored in sig.
// Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) SignDirectKeyBinding(pub *PublicKey, priv *PrivateKey, config *Config) error {
if priv.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
prepareHash, err := sig.PrepareSign(config)
if err != nil {
return err
}
if err := directKeySignatureHash(pub, prepareHash); err != nil {
return err
}
return sig.Sign(prepareHash, priv, config)
}
// CrossSignKey computes a signature from signingKey on pub hashed using hashKey. On success,
// the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) CrossSignKey(pub *PublicKey, hashKey *PublicKey, signingKey *PrivateKey,
config *Config) error {
prepareHash, err := sig.PrepareSign(config)
if err != nil {
return err
}
h, err := keySignatureHash(hashKey, pub, prepareHash)
if err != nil {
return err
}
return sig.Sign(h, signingKey, config)
}
// SignKey computes a signature from priv, asserting that pub is a subkey. On
// success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) SignKey(pub *PublicKey, priv *PrivateKey, config *Config) error {
if priv.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
prepareHash, err := sig.PrepareSign(config)
if err != nil {
return err
}
h, err := keySignatureHash(&priv.PublicKey, pub, prepareHash)
if err != nil {
return err
}
return sig.Sign(h, priv, config)
}
// RevokeKey computes a revocation signature of pub using priv. On success, the signature is
// stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) RevokeKey(pub *PublicKey, priv *PrivateKey, config *Config) error {
prepareHash, err := sig.PrepareSign(config)
if err != nil {
return err
}
if err := keyRevocationHash(pub, prepareHash); err != nil {
return err
}
return sig.Sign(prepareHash, priv, config)
}
// RevokeSubkey computes a subkey revocation signature of pub using priv.
// On success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) RevokeSubkey(pub *PublicKey, priv *PrivateKey, config *Config) error {
// Identical to a subkey binding signature
return sig.SignKey(pub, priv, config)
}
// Serialize marshals sig to w. Sign, SignUserId or SignKey must have been
// called first.
func (sig *Signature) Serialize(w io.Writer) (err error) {
if len(sig.outSubpackets) == 0 {
sig.outSubpackets = sig.rawSubpackets
}
if sig.RSASignature == nil && sig.DSASigR == nil && sig.ECDSASigR == nil && sig.EdDSASigR == nil && sig.EdSig == nil {
return errors.InvalidArgumentError("Signature: need to call Sign, SignUserId or SignKey before Serialize")
}
sigLength := 0
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sigLength = int(sig.RSASignature.EncodedLength())
case PubKeyAlgoDSA:
sigLength = int(sig.DSASigR.EncodedLength())
sigLength += int(sig.DSASigS.EncodedLength())
case PubKeyAlgoECDSA:
sigLength = int(sig.ECDSASigR.EncodedLength())
sigLength += int(sig.ECDSASigS.EncodedLength())
case PubKeyAlgoEdDSA:
sigLength = int(sig.EdDSASigR.EncodedLength())
sigLength += int(sig.EdDSASigS.EncodedLength())
case PubKeyAlgoEd25519:
sigLength = ed25519.SignatureSize
case PubKeyAlgoEd448:
sigLength = ed448.SignatureSize
default:
panic("impossible")
}
hashedSubpacketsLen := subpacketsLength(sig.outSubpackets, true)
unhashedSubpacketsLen := subpacketsLength(sig.outSubpackets, false)
length := 4 + /* length of version|signature type|public-key algorithm|hash algorithm */
2 /* length of hashed subpackets */ + hashedSubpacketsLen +
2 /* length of unhashed subpackets */ + unhashedSubpacketsLen +
2 /* hash tag */ + sigLength
if sig.Version == 6 {
length += 4 + /* the two length fields are four-octet instead of two */
1 + /* salt length */
len(sig.salt) /* length salt */
}
err = serializeHeader(w, packetTypeSignature, length)
if err != nil {
return
}
err = sig.serializeBody(w)
if err != nil {
return err
}
return
}
func (sig *Signature) serializeBody(w io.Writer) (err error) {
var fields []byte
if sig.Version == 6 {
// v6 signatures use 4 octets for length
hashedSubpacketsLen :=
uint32(uint32(sig.HashSuffix[4])<<24) |
uint32(uint32(sig.HashSuffix[5])<<16) |
uint32(uint32(sig.HashSuffix[6])<<8) |
uint32(sig.HashSuffix[7])
fields = sig.HashSuffix[:8+hashedSubpacketsLen]
} else {
hashedSubpacketsLen := uint16(uint16(sig.HashSuffix[4])<<8) |
uint16(sig.HashSuffix[5])
fields = sig.HashSuffix[:6+hashedSubpacketsLen]
}
_, err = w.Write(fields)
if err != nil {
return
}
unhashedSubpacketsLen := subpacketsLength(sig.outSubpackets, false)
var unhashedSubpackets []byte
if sig.Version == 6 {
unhashedSubpackets = make([]byte, 4+unhashedSubpacketsLen)
unhashedSubpackets[0] = byte(unhashedSubpacketsLen >> 24)
unhashedSubpackets[1] = byte(unhashedSubpacketsLen >> 16)
unhashedSubpackets[2] = byte(unhashedSubpacketsLen >> 8)
unhashedSubpackets[3] = byte(unhashedSubpacketsLen)
serializeSubpackets(unhashedSubpackets[4:], sig.outSubpackets, false)
} else {
unhashedSubpackets = make([]byte, 2+unhashedSubpacketsLen)
unhashedSubpackets[0] = byte(unhashedSubpacketsLen >> 8)
unhashedSubpackets[1] = byte(unhashedSubpacketsLen)
serializeSubpackets(unhashedSubpackets[2:], sig.outSubpackets, false)
}
_, err = w.Write(unhashedSubpackets)
if err != nil {
return
}
_, err = w.Write(sig.HashTag[:])
if err != nil {
return
}
if sig.Version == 6 {
// write salt for v6 signatures
_, err = w.Write([]byte{uint8(len(sig.salt))})
if err != nil {
return
}
_, err = w.Write(sig.salt)
if err != nil {
return
}
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
_, err = w.Write(sig.RSASignature.EncodedBytes())
case PubKeyAlgoDSA:
if _, err = w.Write(sig.DSASigR.EncodedBytes()); err != nil {
return
}
_, err = w.Write(sig.DSASigS.EncodedBytes())
case PubKeyAlgoECDSA:
if _, err = w.Write(sig.ECDSASigR.EncodedBytes()); err != nil {
return
}
_, err = w.Write(sig.ECDSASigS.EncodedBytes())
case PubKeyAlgoEdDSA:
if _, err = w.Write(sig.EdDSASigR.EncodedBytes()); err != nil {
return
}
_, err = w.Write(sig.EdDSASigS.EncodedBytes())
case PubKeyAlgoEd25519:
err = ed25519.WriteSignature(w, sig.EdSig)
case PubKeyAlgoEd448:
err = ed448.WriteSignature(w, sig.EdSig)
default:
panic("impossible")
}
return
}
// outputSubpacket represents a subpacket to be marshaled.
type outputSubpacket struct {
hashed bool // true if this subpacket is in the hashed area.
subpacketType signatureSubpacketType
isCritical bool
contents []byte
}
func (sig *Signature) buildSubpackets(issuer PublicKey) (subpackets []outputSubpacket, err error) {
creationTime := make([]byte, 4)
binary.BigEndian.PutUint32(creationTime, uint32(sig.CreationTime.Unix()))
// Signature Creation Time
subpackets = append(subpackets, outputSubpacket{true, creationTimeSubpacket, true, creationTime})
// Signature Expiration Time
if sig.SigLifetimeSecs != nil && *sig.SigLifetimeSecs != 0 {
sigLifetime := make([]byte, 4)
binary.BigEndian.PutUint32(sigLifetime, *sig.SigLifetimeSecs)
subpackets = append(subpackets, outputSubpacket{true, signatureExpirationSubpacket, true, sigLifetime})
}
// Trust Signature
if sig.TrustLevel != 0 {
subpackets = append(subpackets, outputSubpacket{true, trustSubpacket, true, []byte{byte(sig.TrustLevel), byte(sig.TrustAmount)}})
}
// Regular Expression
if sig.TrustRegularExpression != nil {
// RFC specifies the string should be null-terminated; add a null byte to the end
subpackets = append(subpackets, outputSubpacket{true, regularExpressionSubpacket, true, []byte(*sig.TrustRegularExpression + "\000")})
}
// Key Expiration Time
if sig.KeyLifetimeSecs != nil && *sig.KeyLifetimeSecs != 0 {
keyLifetime := make([]byte, 4)
binary.BigEndian.PutUint32(keyLifetime, *sig.KeyLifetimeSecs)
subpackets = append(subpackets, outputSubpacket{true, keyExpirationSubpacket, true, keyLifetime})
}
// Preferred Symmetric Ciphers for v1 SEIPD
if len(sig.PreferredSymmetric) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefSymmetricAlgosSubpacket, false, sig.PreferredSymmetric})
}
// Issuer Key ID
if sig.IssuerKeyId != nil && sig.Version == 4 {
keyId := make([]byte, 8)
binary.BigEndian.PutUint64(keyId, *sig.IssuerKeyId)
// Note: making this critical breaks RPM <=4.16.
// See: https://github.com/ProtonMail/go-crypto/issues/263
subpackets = append(subpackets, outputSubpacket{true, issuerSubpacket, false, keyId})
}
// Notation Data
for _, notation := range sig.Notations {
subpackets = append(
subpackets,
outputSubpacket{
true,
notationDataSubpacket,
notation.IsCritical,
notation.getData(),
})
}
// Preferred Hash Algorithms
if len(sig.PreferredHash) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefHashAlgosSubpacket, false, sig.PreferredHash})
}
// Preferred Compression Algorithms
if len(sig.PreferredCompression) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefCompressionSubpacket, false, sig.PreferredCompression})
}
// Keyserver Preferences
// Keyserver preferences may only appear in self-signatures or certification signatures.
if sig.KeyserverPrefsValid {
var prefs byte
if sig.KeyserverPrefNoModify {
prefs |= KeyserverPrefNoModify
}
subpackets = append(subpackets, outputSubpacket{true, keyserverPrefsSubpacket, false, []byte{prefs}})
}
// Preferred Keyserver
if len(sig.PreferredKeyserver) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefKeyserverSubpacket, false, []uint8(sig.PreferredKeyserver)})
}
// Primary User ID
if sig.IsPrimaryId != nil && *sig.IsPrimaryId {
subpackets = append(subpackets, outputSubpacket{true, primaryUserIdSubpacket, false, []byte{1}})
}
// Policy URI
if len(sig.PolicyURI) > 0 {
subpackets = append(subpackets, outputSubpacket{true, policyUriSubpacket, false, []uint8(sig.PolicyURI)})
}
// Key Flags
// Key flags may only appear in self-signatures or certification signatures.
if sig.FlagsValid {
var flags byte
if sig.FlagCertify {
flags |= KeyFlagCertify
}
if sig.FlagSign {
flags |= KeyFlagSign
}
if sig.FlagEncryptCommunications {
flags |= KeyFlagEncryptCommunications
}
if sig.FlagEncryptStorage {
flags |= KeyFlagEncryptStorage
}
if sig.FlagSplitKey {
flags |= KeyFlagSplitKey
}
if sig.FlagAuthenticate {
flags |= KeyFlagAuthenticate
}
if sig.FlagGroupKey {
flags |= KeyFlagGroupKey
}
subpackets = append(subpackets, outputSubpacket{true, keyFlagsSubpacket, true, []byte{flags}})
}
// Signer's User ID
if sig.SignerUserId != nil {
subpackets = append(subpackets, outputSubpacket{true, signerUserIdSubpacket, false, []byte(*sig.SignerUserId)})
}
// Reason for Revocation
// Revocation reason appears only in revocation signatures and is serialized as per section 5.2.3.31.
if sig.RevocationReason != nil {
subpackets = append(subpackets, outputSubpacket{true, reasonForRevocationSubpacket, true,
append([]uint8{uint8(*sig.RevocationReason)}, []uint8(sig.RevocationReasonText)...)})
}
// Features
var features = byte(0x00)
if sig.SEIPDv1 {
features |= 0x01
}
if sig.SEIPDv2 {
features |= 0x08
}
if features != 0x00 {
subpackets = append(subpackets, outputSubpacket{true, featuresSubpacket, false, []byte{features}})
}
// Embedded Signature
// EmbeddedSignature appears only in subkeys capable of signing and is serialized as per section 5.2.3.34.
if sig.EmbeddedSignature != nil {
var buf bytes.Buffer
err = sig.EmbeddedSignature.serializeBody(&buf)
if err != nil {
return
}
subpackets = append(subpackets, outputSubpacket{true, embeddedSignatureSubpacket, true, buf.Bytes()})
}
// Issuer Fingerprint
if sig.IssuerFingerprint != nil {
contents := append([]uint8{uint8(issuer.Version)}, sig.IssuerFingerprint...)
subpackets = append(subpackets, outputSubpacket{true, issuerFingerprintSubpacket, sig.Version >= 5, contents})
}
// Intended Recipient Fingerprint
for _, recipient := range sig.IntendedRecipients {
subpackets = append(
subpackets,
outputSubpacket{
true,
intendedRecipientSubpacket,
false,
recipient.Serialize(),
})
}
// Preferred AEAD Ciphersuites
if len(sig.PreferredCipherSuites) > 0 {
serialized := make([]byte, len(sig.PreferredCipherSuites)*2)
for i, cipherSuite := range sig.PreferredCipherSuites {
serialized[2*i] = cipherSuite[0]
serialized[2*i+1] = cipherSuite[1]
}
subpackets = append(subpackets, outputSubpacket{true, prefCipherSuitesSubpacket, false, serialized})
}
return
}
// AddMetadataToHashSuffix modifies the current hash suffix to include metadata
// (format, filename, and time). Version 5 keys protect this data including it
// in the hash computation. See section 5.2.4.
func (sig *Signature) AddMetadataToHashSuffix() {
if sig == nil || sig.Version != 5 {
return
}
if sig.SigType != 0x00 && sig.SigType != 0x01 {
return
}
lit := sig.Metadata
if lit == nil {
// This will translate into six 0x00 bytes.
lit = &LiteralData{}
}
// Extract the current byte count
n := sig.HashSuffix[len(sig.HashSuffix)-8:]
l := uint64(
uint64(n[0])<<56 | uint64(n[1])<<48 | uint64(n[2])<<40 | uint64(n[3])<<32 |
uint64(n[4])<<24 | uint64(n[5])<<16 | uint64(n[6])<<8 | uint64(n[7]))
suffix := bytes.NewBuffer(nil)
suffix.Write(sig.HashSuffix[:l])
// Add the metadata
var buf [4]byte
buf[0] = lit.Format
fileName := lit.FileName
if len(lit.FileName) > 255 {
fileName = fileName[:255]
}
buf[1] = byte(len(fileName))
suffix.Write(buf[:2])
suffix.Write([]byte(lit.FileName))
binary.BigEndian.PutUint32(buf[:], lit.Time)
suffix.Write(buf[:])
suffix.Write([]byte{0x05, 0xff})
suffix.Write([]byte{
uint8(l >> 56), uint8(l >> 48), uint8(l >> 40), uint8(l >> 32),
uint8(l >> 24), uint8(l >> 16), uint8(l >> 8), uint8(l),
})
sig.HashSuffix = suffix.Bytes()
}
// SaltLengthForHash selects the required salt length for the given hash algorithm,
// as per Table 23 (Hash algorithm registry) of the crypto refresh.
// See RFC 9580 Section 9.5.
func SaltLengthForHash(hash crypto.Hash) (int, error) {
switch hash {
case crypto.SHA256, crypto.SHA224, crypto.SHA3_256:
return 16, nil
case crypto.SHA384:
return 24, nil
case crypto.SHA512, crypto.SHA3_512:
return 32, nil
default:
return 0, errors.UnsupportedError("hash function not supported for V6 signatures")
}
}
// SignatureSaltForHash generates a random signature salt
// with the length for the given hash algorithm.
// See RFC 9580 Section 9.5.
func SignatureSaltForHash(hash crypto.Hash, randReader io.Reader) ([]byte, error) {
saltLength, err := SaltLengthForHash(hash)
if err != nil {
return nil, err
}
salt := make([]byte, saltLength)
_, err = io.ReadFull(randReader, salt)
if err != nil {
return nil, err
}
return salt, nil
}
// removeNotationsWithName removes all notations in this signature with the given name.
func (sig *Signature) removeNotationsWithName(name string) {
if sig == nil || sig.Notations == nil {
return
}
updatedNotations := make([]*Notation, 0, len(sig.Notations))
for _, notation := range sig.Notations {
if notation.Name != name {
updatedNotations = append(updatedNotations, notation)
}
}
sig.Notations = updatedNotations
}