mirror of
https://github.com/ollama/ollama.git
synced 2025-05-11 02:16:36 +02:00
parent
7d6eb0d4c3
commit
05cd82ef94
33 changed files with 94 additions and 94 deletions
|
@ -15,9 +15,9 @@ import (
|
|||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/discover"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/gpu"
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
|
@ -41,10 +41,10 @@ type Scheduler struct {
|
|||
loaded map[string]*runnerRef
|
||||
loadedMu sync.Mutex
|
||||
|
||||
loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int)
|
||||
newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
|
||||
getGpuFn func() gpu.GpuInfoList
|
||||
getCpuFn func() gpu.GpuInfoList
|
||||
loadFn func(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int)
|
||||
newServerFn func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
|
||||
getGpuFn func() discover.GpuInfoList
|
||||
getCpuFn func() discover.GpuInfoList
|
||||
reschedDelay time.Duration
|
||||
}
|
||||
|
||||
|
@ -69,8 +69,8 @@ func InitScheduler(ctx context.Context) *Scheduler {
|
|||
unloadedCh: make(chan interface{}, maxQueue),
|
||||
loaded: make(map[string]*runnerRef),
|
||||
newServerFn: llm.NewLlamaServer,
|
||||
getGpuFn: gpu.GetGPUInfo,
|
||||
getCpuFn: gpu.GetCPUInfo,
|
||||
getGpuFn: discover.GetGPUInfo,
|
||||
getCpuFn: discover.GetCPUInfo,
|
||||
reschedDelay: 250 * time.Millisecond,
|
||||
}
|
||||
sched.loadFn = sched.load
|
||||
|
@ -157,7 +157,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
|||
} else {
|
||||
// Either no models are loaded or below envconfig.MaxRunners
|
||||
// Get a refreshed GPU list
|
||||
var gpus gpu.GpuInfoList
|
||||
var gpus discover.GpuInfoList
|
||||
if pending.opts.NumGPU == 0 {
|
||||
gpus = s.getCpuFn()
|
||||
} else {
|
||||
|
@ -409,7 +409,7 @@ func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *Llm
|
|||
}()
|
||||
}
|
||||
|
||||
func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
|
||||
func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int) {
|
||||
if numParallel < 1 {
|
||||
numParallel = 1
|
||||
}
|
||||
|
@ -470,7 +470,7 @@ func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList,
|
|||
}()
|
||||
}
|
||||
|
||||
func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
|
||||
func (s *Scheduler) updateFreeSpace(allGpus discover.GpuInfoList) {
|
||||
type predKey struct {
|
||||
Library string
|
||||
ID string
|
||||
|
@ -513,8 +513,8 @@ func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
|
|||
// to avoid scheduling another model on the same GPU(s) that haven't stabilized.
|
||||
// This routine returns the set of GPUs that do not have an active loading model.
|
||||
// If all GPUs have loading models, an empty list will be returned (not a single CPU entry)
|
||||
func (s *Scheduler) filterGPUsWithoutLoadingModels(allGpus gpu.GpuInfoList) gpu.GpuInfoList {
|
||||
ret := append(gpu.GpuInfoList{}, allGpus...)
|
||||
func (s *Scheduler) filterGPUsWithoutLoadingModels(allGpus discover.GpuInfoList) discover.GpuInfoList {
|
||||
ret := append(discover.GpuInfoList{}, allGpus...)
|
||||
s.loadedMu.Lock()
|
||||
defer s.loadedMu.Unlock()
|
||||
for _, runner := range s.loaded {
|
||||
|
@ -541,8 +541,8 @@ type runnerRef struct {
|
|||
// unloading bool // set to true when we are trying to unload the runner
|
||||
|
||||
llama llm.LlamaServer
|
||||
loading bool // True only during initial load, then false forever
|
||||
gpus gpu.GpuInfoList // Recorded at time of provisioning
|
||||
loading bool // True only during initial load, then false forever
|
||||
gpus discover.GpuInfoList // Recorded at time of provisioning
|
||||
estimatedVRAM uint64
|
||||
estimatedTotal uint64
|
||||
|
||||
|
@ -630,7 +630,7 @@ func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
|
|||
start := time.Now()
|
||||
|
||||
// Establish a baseline before we unload
|
||||
gpusBefore := gpu.GetGPUInfo()
|
||||
gpusBefore := discover.GetGPUInfo()
|
||||
var totalMemoryBefore, freeMemoryBefore uint64
|
||||
for _, gpu := range gpusBefore {
|
||||
totalMemoryBefore += gpu.TotalMemory
|
||||
|
@ -648,7 +648,7 @@ func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
|
|||
}
|
||||
|
||||
// Query GPUs, look for free to go back up
|
||||
gpusNow := gpu.GetGPUInfo()
|
||||
gpusNow := discover.GetGPUInfo()
|
||||
var totalMemoryNow, freeMemoryNow uint64
|
||||
for _, gpu := range gpusNow {
|
||||
totalMemoryNow += gpu.TotalMemory
|
||||
|
@ -685,7 +685,7 @@ func (a ByDuration) Less(i, j int) bool {
|
|||
// If the model can not be fit fully within the available GPU(s) nil is returned
|
||||
// If numParallel is <= 0, this will attempt try to optimize parallism based on available VRAM, and adjust
|
||||
// opts.NumCtx accordingly
|
||||
func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
|
||||
func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
|
||||
var estimatedVRAM uint64
|
||||
|
||||
var numParallelToTry []int
|
||||
|
@ -698,22 +698,22 @@ func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoL
|
|||
|
||||
for _, gl := range gpus.ByLibrary() {
|
||||
var ok bool
|
||||
sgl := append(make(gpu.GpuInfoList, 0, len(gl)), gl...)
|
||||
sgl := append(make(discover.GpuInfoList, 0, len(gl)), gl...)
|
||||
|
||||
// TODO - potentially sort by performance capability, existing models loaded, etc.
|
||||
// TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them
|
||||
// Note: at present, this will favor more VRAM over faster GPU speed in mixed setups
|
||||
sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl)))
|
||||
sort.Sort(sort.Reverse(discover.ByFreeMemory(sgl)))
|
||||
|
||||
// First attempt to fit the model into a single GPU
|
||||
for _, p := range numParallelToTry {
|
||||
req.opts.NumCtx = req.origNumCtx * p
|
||||
if !envconfig.SchedSpread() {
|
||||
for _, g := range sgl {
|
||||
if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
||||
if ok, estimatedVRAM = llm.PredictServerFit([]discover.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
||||
slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
|
||||
*numParallel = p
|
||||
return []gpu.GpuInfo{g}
|
||||
return []discover.GpuInfo{g}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -737,7 +737,7 @@ func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoL
|
|||
}
|
||||
|
||||
// If multiple Libraries are detected, pick the Library which loads the most layers for the model
|
||||
func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
|
||||
func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
|
||||
if *numParallel <= 0 {
|
||||
*numParallel = 1
|
||||
req.opts.NumCtx = req.origNumCtx
|
||||
|
@ -822,7 +822,7 @@ func (s *Scheduler) expireRunner(model *Model) {
|
|||
|
||||
// If other runners are loaded, make sure the pending request will fit in system memory
|
||||
// If not, pick a runner to unload, else return nil and the request can be loaded
|
||||
func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) *runnerRef {
|
||||
func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList) *runnerRef {
|
||||
slog.Debug("evaluating if CPU model load will fit in available system memory")
|
||||
estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts)
|
||||
if estimate.TotalSize <= gpus[0].FreeMemory {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue