sample: improve ollama engine sampler performance (#9374)

This change bring in various interface cleanups along with greatly improving the performance of the sampler.

Tested with llama3.2 on local machine.
Improves performance from ~ 70 tokens/s -> 135 tokens/s with topK(40) enabled.
Without topK performance is ~ 110 tokens/s
This commit is contained in:
Parth Sareen 2025-03-07 12:37:48 -08:00 committed by GitHub
parent 1f6986e919
commit 0682dae027
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 572 additions and 331 deletions

View file

@ -1,120 +1,203 @@
package sample
import (
"cmp"
"math"
"slices"
pq "github.com/emirpasic/gods/v2/queues/priorityqueue"
)
type Transform interface {
Apply([]float64) []float64
}
// TODO(parthsareen): potentially cache softmax values
func softmax(logits []float64) []float64 {
var sum float64
probs := make([]float64, len(logits))
for i, v := range logits {
probs[i] = math.Exp(v)
sum += probs[i]
func softmax(ts []logit) []logit {
var sum float32
for i, v := range ts {
ts[i].value = float32(math.Exp(float64(v.value)))
sum += ts[i].value
}
for i := range probs {
probs[i] /= sum
for i := range ts {
ts[i].value /= sum
}
return probs
return ts
}
type Temperature float64
func temperature(ti []logit, t float32) []logit {
if t == 1 {
return ti
}
func (t Temperature) Apply(logits []float64) []float64 {
temp := math.Max(float64(t), 1e-7)
temp := max(t, 1e-7)
maxLogit := float32(math.Inf(-1))
for _, token := range ti {
if token.value > maxLogit {
maxLogit = token.value
}
}
// subtracting max logit to avoid under/overflow
maxLogit := slices.Max(logits)
for i := range logits {
logits[i] = (logits[i] - maxLogit) / temp
for i := range ti {
ti[i].value = (ti[i].value - maxLogit) / temp
}
return logits
return ti
}
type logitMap struct {
index int
logit float64
}
type TopK int
// TODO(parthsareen): avoid having to check all logits after this transform
func (k TopK) Apply(logits []float64) []float64 {
if int(k) >= len(logits) {
return logits
}
q := pq.NewWith(func(a, b logitMap) int {
return -cmp.Compare(a.logit, b.logit)
})
for i, logit := range logits {
q.Enqueue(logitMap{index: i, logit: logit})
}
validLogits := make(map[int]float64)
for range k {
logitMap, _ := q.Dequeue()
validLogits[logitMap.index] = logitMap.logit
}
for i := range logits {
if _, ok := validLogits[i]; !ok {
logits[i] = math.Inf(-1)
}
}
return logits
}
type TopP float64
func (p TopP) Apply(logits []float64) []float64 {
probs := softmax(logits)
indices := make([]int, len(probs))
for i := range indices {
indices[i] = i
}
// sort in descending order
slices.SortFunc(indices, func(i, j int) int {
return cmp.Compare(probs[j], probs[i])
})
var sum float64
for i, idx := range indices {
sum += probs[idx]
if sum > float64(p) {
for _, idx := range indices[i+1:] {
logits[idx] = math.Inf(-1)
}
// siftDown maintains a min-heap property by recursively moving larger elements down the heap.
//
// The heap is represented as an array where for any node at index i:
// - Left child is at index 2i + 1
// - Right child is at index 2i + 2
// - Parent is at index (i-1)/2
//
// The function compares a node with its children and:
// 1. Finds the smallest value between the node and its children
// 2. If the node is not the smallest, swaps it with its smallest child
// 3. Continues this process down the affected path until the min-heap property is restored
func siftDown(data []logit, start, end int) {
root := start
for {
child := 2*root + 1
if child >= end {
break
}
// Find smaller child (we want min heap)
if child+1 < end && data[child+1].value < data[child].value {
child++
}
// Exit if root is already smaller than children
if data[root].value <= data[child].value {
break
}
// Swap with smaller child and continue
data[root], data[child] = data[child], data[root]
root = child
}
return logits
}
type MinP float64
// topK limits the number of tokens considered to the k highest logits
func topK(ts []logit, k int) []logit {
if k >= len(ts) {
return ts
}
// Heapify + siftDown - O(nlog(k))
// Build min-heap of first k elements
heap := ts[:k]
for i := k/2 - 1; i >= 0; i-- {
siftDown(heap, i, k)
}
func (p MinP) Apply(logits []float64) []float64 {
probs := softmax(logits)
threshold := slices.Max(probs) * float64(p)
for i, prob := range probs {
if prob < threshold {
logits[i] = math.Inf(-1)
// Process remaining elements - if larger than heap root, replace root
for i := k; i < len(ts); i++ {
if ts[i].value > heap[0].value {
heap[0] = ts[i]
siftDown(heap, 0, k)
}
}
return logits
slices.Reverse(heap)
ts = heap
return ts
}
// topP limits tokens to those with cumulative probability p
func topP(ts []logit, p float32) []logit {
if p == 1.0 {
return ts
}
// Find cutoff index where cumulative sum exceeds p
var sum float32
for i, t := range ts {
sum += t.value
if sum > float32(p) {
ts = ts[:i+1]
return ts
}
}
return ts
}
// minP limits tokens to those with cumulative probability p
func minP(ts []logit, p float32) []logit {
if p == 1.0 {
return ts
}
maxProb := float32(math.Inf(-1))
for _, token := range ts {
if token.value > maxProb {
maxProb = token.value
}
}
threshold := maxProb * float32(p)
// Filter tokens in-place
validTokens := ts[:0]
for i, token := range ts {
if token.value >= threshold {
validTokens = append(validTokens, ts[i])
}
}
ts = validTokens
return ts
}
// TODO(parthsareen): possibly replace with simpler implementation https://github.com/ollama/ollama/issues/9584
// Conting sort implementation to sort tokens by logits
func sortLogits(tokens []logit) {
if len(tokens) <= 1 {
return
}
// Find max/min in a single pass
minLogit, maxLogit := tokens[0].value, tokens[0].value
for _, t := range tokens[1:] {
if t.value < minLogit {
minLogit = t.value
} else if t.value > maxLogit {
maxLogit = t.value
}
}
// Calculate scaling to map to uint32 range
logitRange := maxLogit - minLogit
if logitRange < 1e-6 {
return // All values effectively equal
}
// Count frequencies directly from tokens
const maxInt = (1 << 24) - 1 // Use 24 bits for good granularity
var counts [256]int // For first byte
// First pass: count frequencies
for _, t := range tokens {
// Map to [0, maxInt] range
score := min(uint32((t.value-minLogit)*float32(maxInt)/logitRange), maxInt)
counts[score>>16]++
}
// Calculate offsets
var offset int
for i := range counts {
count := counts[i]
counts[i] = offset
offset += count
}
// Second pass: place elements in correct position
output := make([]logit, len(tokens))
// Track current positions
countsCopy := counts
for i, t := range tokens {
score := min(uint32((t.value-minLogit)*float32(maxInt)/logitRange), maxInt)
pos := countsCopy[score>>16]
countsCopy[score>>16]++
output[len(tokens)-1-pos] = tokens[i]
}
copy(tokens, output)
}