mirror of
https://github.com/ollama/ollama.git
synced 2025-05-11 18:36:41 +02:00
model: Pass input tensor instead of raw data to models
Rather than directly giving the input data to models, we can pass a tensor instead. In the short term, this saves some duplicated code. Longer term, we will want to overlap setting up the next batch with processing of the current one. In this case, we will only have the shape of tensor but it will not be loaded with data at the time of graph generation. By passing only a tensor to models now, we set up this possibility and prevent them from relying on data that they won't have in the future. Although the same could be done for Positions and Outputs, in some cases we either need the raw input data or don't use them at all. Therefore, for now we leave them as they are and allow models to convert them to tensors as needed.
This commit is contained in:
parent
0c220935bd
commit
0fbfcf3c9c
7 changed files with 20 additions and 31 deletions
|
@ -348,6 +348,7 @@ func (s *Server) processBatch() error {
|
|||
}
|
||||
defer s.mu.Unlock()
|
||||
|
||||
var batchInputs []int32
|
||||
var batch input.Batch
|
||||
|
||||
for i, seq := range s.seqs {
|
||||
|
@ -395,9 +396,9 @@ func (s *Server) processBatch() error {
|
|||
}
|
||||
}
|
||||
|
||||
batch.Inputs = append(batch.Inputs, inp.Token)
|
||||
batchInputs = append(batchInputs, inp.Token)
|
||||
if inp.Multimodal != nil {
|
||||
batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batch.Inputs) - 1, Multimodal: inp.Multimodal})
|
||||
batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: inp.Multimodal})
|
||||
}
|
||||
|
||||
batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
|
||||
|
@ -405,7 +406,7 @@ func (s *Server) processBatch() error {
|
|||
|
||||
seq.iBatch = len(batch.Outputs)
|
||||
if j+1 == len(seq.inputs) {
|
||||
batch.Outputs = append(batch.Outputs, int32(len(batch.Inputs)-1))
|
||||
batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
|
||||
}
|
||||
seq.pendingInputs = append(seq.pendingInputs, inp)
|
||||
}
|
||||
|
@ -413,14 +414,14 @@ func (s *Server) processBatch() error {
|
|||
seq.inputs = seq.inputs[len(seq.pendingInputs):]
|
||||
}
|
||||
|
||||
if len(batch.Inputs) == 0 {
|
||||
if len(batchInputs) == 0 {
|
||||
return nil
|
||||
}
|
||||
|
||||
ctx := s.model.Backend().NewContext()
|
||||
defer ctx.Close()
|
||||
|
||||
modelOutput, err := model.Forward(ctx, s.model, batch)
|
||||
modelOutput, err := model.Forward(ctx, s.model, batchInputs, batch)
|
||||
if err != nil {
|
||||
return fmt.Errorf("failed to decode batch: %w", err)
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue