mirror of
https://github.com/ollama/ollama.git
synced 2025-05-11 02:16:36 +02:00
model: Pass input tensor instead of raw data to models
Rather than directly giving the input data to models, we can pass a tensor instead. In the short term, this saves some duplicated code. Longer term, we will want to overlap setting up the next batch with processing of the current one. In this case, we will only have the shape of tensor but it will not be loaded with data at the time of graph generation. By passing only a tensor to models now, we set up this possibility and prevent them from relying on data that they won't have in the future. Although the same could be done for Positions and Outputs, in some cases we either need the raw input data or don't use them at all. Therefore, for now we leave them as they are and allow models to convert them to tensors as needed.
This commit is contained in:
parent
0c220935bd
commit
0fbfcf3c9c
7 changed files with 20 additions and 31 deletions
|
@ -1,5 +1,7 @@
|
||||||
package input
|
package input
|
||||||
|
|
||||||
|
import "github.com/ollama/ollama/ml"
|
||||||
|
|
||||||
// Input represents one token in the input stream
|
// Input represents one token in the input stream
|
||||||
type Input struct {
|
type Input struct {
|
||||||
// Token is a single element of text.
|
// Token is a single element of text.
|
||||||
|
@ -36,7 +38,7 @@ type MultimodalIndex struct {
|
||||||
// Batch contains the inputs for a model forward pass
|
// Batch contains the inputs for a model forward pass
|
||||||
type Batch struct {
|
type Batch struct {
|
||||||
// Inputs is the input tokens, including placeholders for multimodal inputs.
|
// Inputs is the input tokens, including placeholders for multimodal inputs.
|
||||||
Inputs []int32
|
Inputs ml.Tensor
|
||||||
|
|
||||||
// Multimodal is a set of multimodal embeddings previously created by
|
// Multimodal is a set of multimodal embeddings previously created by
|
||||||
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
|
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
|
||||||
|
|
|
@ -280,7 +280,7 @@ func canNil(t reflect.Type) bool {
|
||||||
t.Kind() == reflect.Slice
|
t.Kind() == reflect.Slice
|
||||||
}
|
}
|
||||||
|
|
||||||
func Forward(ctx ml.Context, m Model, batch input.Batch) (ml.Tensor, error) {
|
func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Tensor, error) {
|
||||||
if len(batch.Positions) != len(batch.Sequences) {
|
if len(batch.Positions) != len(batch.Sequences) {
|
||||||
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(batch.Positions), len(batch.Sequences))
|
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(batch.Positions), len(batch.Sequences))
|
||||||
}
|
}
|
||||||
|
@ -289,6 +289,12 @@ func Forward(ctx ml.Context, m Model, batch input.Batch) (ml.Tensor, error) {
|
||||||
return nil, errors.New("batch size cannot be less than 1")
|
return nil, errors.New("batch size cannot be less than 1")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
var err error
|
||||||
|
batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
cache := m.Config().Cache
|
cache := m.Config().Cache
|
||||||
if cache != nil {
|
if cache != nil {
|
||||||
err := cache.StartForward(ctx, batch)
|
err := cache.StartForward(ctx, batch)
|
||||||
|
|
|
@ -169,11 +169,6 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
|
||||||
}
|
}
|
||||||
|
|
||||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||||
inputs, err := ctx.Input().FromIntSlice(batch.Inputs, len(batch.Inputs))
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
|
@ -184,7 +179,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
|
|
||||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
|
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
|
||||||
|
|
||||||
if len(m.Layers) == gemma27BLayerCount {
|
if len(m.Layers) == gemma27BLayerCount {
|
||||||
|
|
|
@ -140,11 +140,6 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||||
}
|
}
|
||||||
|
|
||||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||||
inputs, err := ctx.Input().FromIntSlice(batch.Inputs, len(batch.Inputs))
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
|
@ -155,7 +150,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
|
|
||||||
return m.TextModel.Forward(ctx, inputs, positions, outputs, batch, m.Cache), nil
|
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
|
||||||
}
|
}
|
||||||
|
|
||||||
func init() {
|
func init() {
|
||||||
|
|
|
@ -140,11 +140,6 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
|
||||||
}
|
}
|
||||||
|
|
||||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||||
inputs, err := ctx.Input().FromIntSlice(batch.Inputs, len(batch.Inputs))
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
|
@ -155,7 +150,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
|
|
||||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||||
|
|
||||||
for i, layer := range m.Layers {
|
for i, layer := range m.Layers {
|
||||||
m.Cache.SetLayer(i)
|
m.Cache.SetLayer(i)
|
||||||
|
|
|
@ -144,11 +144,6 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
inputs, err := ctx.Input().FromIntSlice(batch.Inputs, len(batch.Inputs))
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
|
@ -160,7 +155,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: attention mask, cross attention mask
|
// TODO: attention mask, cross attention mask
|
||||||
return m.TextModel.Forward(ctx, inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
|
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
|
||||||
}
|
}
|
||||||
|
|
||||||
func init() {
|
func init() {
|
||||||
|
|
|
@ -348,6 +348,7 @@ func (s *Server) processBatch() error {
|
||||||
}
|
}
|
||||||
defer s.mu.Unlock()
|
defer s.mu.Unlock()
|
||||||
|
|
||||||
|
var batchInputs []int32
|
||||||
var batch input.Batch
|
var batch input.Batch
|
||||||
|
|
||||||
for i, seq := range s.seqs {
|
for i, seq := range s.seqs {
|
||||||
|
@ -395,9 +396,9 @@ func (s *Server) processBatch() error {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
batch.Inputs = append(batch.Inputs, inp.Token)
|
batchInputs = append(batchInputs, inp.Token)
|
||||||
if inp.Multimodal != nil {
|
if inp.Multimodal != nil {
|
||||||
batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batch.Inputs) - 1, Multimodal: inp.Multimodal})
|
batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: inp.Multimodal})
|
||||||
}
|
}
|
||||||
|
|
||||||
batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
|
batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
|
||||||
|
@ -405,7 +406,7 @@ func (s *Server) processBatch() error {
|
||||||
|
|
||||||
seq.iBatch = len(batch.Outputs)
|
seq.iBatch = len(batch.Outputs)
|
||||||
if j+1 == len(seq.inputs) {
|
if j+1 == len(seq.inputs) {
|
||||||
batch.Outputs = append(batch.Outputs, int32(len(batch.Inputs)-1))
|
batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
|
||||||
}
|
}
|
||||||
seq.pendingInputs = append(seq.pendingInputs, inp)
|
seq.pendingInputs = append(seq.pendingInputs, inp)
|
||||||
}
|
}
|
||||||
|
@ -413,14 +414,14 @@ func (s *Server) processBatch() error {
|
||||||
seq.inputs = seq.inputs[len(seq.pendingInputs):]
|
seq.inputs = seq.inputs[len(seq.pendingInputs):]
|
||||||
}
|
}
|
||||||
|
|
||||||
if len(batch.Inputs) == 0 {
|
if len(batchInputs) == 0 {
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
ctx := s.model.Backend().NewContext()
|
ctx := s.model.Backend().NewContext()
|
||||||
defer ctx.Close()
|
defer ctx.Close()
|
||||||
|
|
||||||
modelOutput, err := model.Forward(ctx, s.model, batch)
|
modelOutput, err := model.Forward(ctx, s.model, batchInputs, batch)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return fmt.Errorf("failed to decode batch: %w", err)
|
return fmt.Errorf("failed to decode batch: %w", err)
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue