mirror of
https://github.com/ollama/ollama.git
synced 2025-05-10 18:06:33 +02:00
sample: make mutations in transforms explicit (#9743)
* updated minP to use early exit making use of sorted tokens
This commit is contained in:
parent
50b5962042
commit
108fe02165
3 changed files with 110 additions and 72 deletions
|
@ -87,8 +87,9 @@ func (s *Sampler) sample(tokens []token) (token, error) {
|
||||||
// topK also sorts the tokens in descending order of logits
|
// topK also sorts the tokens in descending order of logits
|
||||||
tokens = topK(tokens, s.topK)
|
tokens = topK(tokens, s.topK)
|
||||||
|
|
||||||
tokens = temperature(tokens, s.temperature)
|
// scale and normalize the tokens in place
|
||||||
tokens = softmax(tokens)
|
temperature(tokens, s.temperature)
|
||||||
|
softmax(tokens)
|
||||||
|
|
||||||
tokens = topP(tokens, s.topP)
|
tokens = topP(tokens, s.topP)
|
||||||
tokens = minP(tokens, s.minP)
|
tokens = minP(tokens, s.minP)
|
||||||
|
|
|
@ -26,17 +26,16 @@ func (h *tokenHeap) Pop() any {
|
||||||
}
|
}
|
||||||
|
|
||||||
// temperature applies scaling to the logits
|
// temperature applies scaling to the logits
|
||||||
func temperature(ts []token, temp float32) []token {
|
func temperature(ts []token, temp float32) {
|
||||||
// Ensure temperature clipping near 0 to avoid numerical instability
|
// Ensure temperature clipping near 0 to avoid numerical instability
|
||||||
temp = max(temp, 1e-7)
|
temp = max(temp, 1e-7)
|
||||||
for i := range ts {
|
for i := range ts {
|
||||||
ts[i].value = ts[i].value / temp
|
ts[i].value = ts[i].value / temp
|
||||||
}
|
}
|
||||||
return ts
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// softmax applies normalization to the logits
|
// softmax applies normalization to the logits
|
||||||
func softmax(ts []token) []token {
|
func softmax(ts []token) {
|
||||||
// Find max logit for numerical stability
|
// Find max logit for numerical stability
|
||||||
maxLogit := float32(math.Inf(-1))
|
maxLogit := float32(math.Inf(-1))
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
|
@ -56,8 +55,6 @@ func softmax(ts []token) []token {
|
||||||
for i := range ts {
|
for i := range ts {
|
||||||
ts[i].value /= sum
|
ts[i].value /= sum
|
||||||
}
|
}
|
||||||
|
|
||||||
return ts
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// topK limits the number of tokens considered to the k highest logits
|
// topK limits the number of tokens considered to the k highest logits
|
||||||
|
@ -99,6 +96,7 @@ func topK(ts []token, k int) []token {
|
||||||
}
|
}
|
||||||
|
|
||||||
// topP limits tokens to those with cumulative probability p
|
// topP limits tokens to those with cumulative probability p
|
||||||
|
// requires ts to be sorted in descending order of probabilities
|
||||||
func topP(ts []token, p float32) []token {
|
func topP(ts []token, p float32) []token {
|
||||||
if p == 1.0 {
|
if p == 1.0 {
|
||||||
return ts
|
return ts
|
||||||
|
@ -109,37 +107,24 @@ func topP(ts []token, p float32) []token {
|
||||||
for i, t := range ts {
|
for i, t := range ts {
|
||||||
sum += t.value
|
sum += t.value
|
||||||
if sum > float32(p) {
|
if sum > float32(p) {
|
||||||
ts = ts[:i+1]
|
return ts[:i+1]
|
||||||
return ts
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return ts
|
return ts
|
||||||
}
|
}
|
||||||
|
|
||||||
// minP limits tokens to those with cumulative probability p
|
// minP filters tokens with probabilities >= p * max_prob
|
||||||
|
// requires ts to be sorted in descending order of probabilities
|
||||||
func minP(ts []token, p float32) []token {
|
func minP(ts []token, p float32) []token {
|
||||||
if p == 1.0 {
|
maxProb := ts[0].value
|
||||||
return ts
|
|
||||||
}
|
|
||||||
|
|
||||||
maxProb := float32(math.Inf(-1))
|
threshold := maxProb * p
|
||||||
for _, token := range ts {
|
|
||||||
if token.value > maxProb {
|
for i, t := range ts {
|
||||||
maxProb = token.value
|
if t.value < threshold {
|
||||||
|
return ts[:i]
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
threshold := maxProb * float32(p)
|
|
||||||
|
|
||||||
// Filter tokens in-place
|
|
||||||
validTokens := ts[:0]
|
|
||||||
for i, token := range ts {
|
|
||||||
if token.value >= threshold {
|
|
||||||
validTokens = append(validTokens, ts[i])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
ts = validTokens
|
|
||||||
return ts
|
return ts
|
||||||
}
|
}
|
||||||
|
|
|
@ -34,17 +34,22 @@ func compareLogits(t *testing.T, name string, want []float32, got []token) {
|
||||||
|
|
||||||
func TestTemperature(t *testing.T) {
|
func TestTemperature(t *testing.T) {
|
||||||
input := []float32{1.0, 4.0, -2.0, 0.0}
|
input := []float32{1.0, 4.0, -2.0, 0.0}
|
||||||
got := temperature(toTokens(input), 0.5)
|
tokens := toTokens(input)
|
||||||
|
temperature(tokens, 0.5)
|
||||||
want := []float32{2.0, 8.0, -4.0, 0.0}
|
want := []float32{2.0, 8.0, -4.0, 0.0}
|
||||||
compareLogits(t, "temperature(0.5)", want, got)
|
compareLogits(t, "temperature(0.5)", want, tokens)
|
||||||
|
|
||||||
got = temperature(toTokens(input), 1.0)
|
input = []float32{1.0, 4.0, -2.0, 0.0}
|
||||||
|
tokens = toTokens(input)
|
||||||
|
temperature(tokens, 1.0)
|
||||||
want = []float32{1.0, 4.0, -2.0, 0.0}
|
want = []float32{1.0, 4.0, -2.0, 0.0}
|
||||||
compareLogits(t, "temperature(1)", want, got)
|
compareLogits(t, "temperature(1)", want, tokens)
|
||||||
|
|
||||||
got = temperature(toTokens(input), 0.0)
|
input = []float32{1.0, 4.0, -2.0, 0.0}
|
||||||
|
tokens = toTokens(input)
|
||||||
|
temperature(tokens, 0.0)
|
||||||
want = []float32{1e7, 4e7, -2e7, 0.0}
|
want = []float32{1e7, 4e7, -2e7, 0.0}
|
||||||
compareLogits(t, "temperature(0)", want, got)
|
compareLogits(t, "temperature(0)", want, tokens)
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestSoftmax(t *testing.T) {
|
func TestSoftmax(t *testing.T) {
|
||||||
|
@ -90,16 +95,17 @@ func TestSoftmax(t *testing.T) {
|
||||||
|
|
||||||
for _, tt := range tests {
|
for _, tt := range tests {
|
||||||
t.Run(tt.name, func(t *testing.T) {
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
got := softmax(toTokens(tt.input))
|
tokens := toTokens(tt.input)
|
||||||
|
softmax(tokens)
|
||||||
|
|
||||||
if tt.expected != nil {
|
if tt.expected != nil {
|
||||||
compareLogits(t, tt.name, tt.expected, got)
|
compareLogits(t, tt.name, tt.expected, tokens)
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
|
|
||||||
// Check probabilities sum to 1
|
// Check probabilities sum to 1
|
||||||
var sum float32
|
var sum float32
|
||||||
for _, token := range got {
|
for _, token := range tokens {
|
||||||
sum += token.value
|
sum += token.value
|
||||||
if token.value < 0 || token.value > 1 {
|
if token.value < 0 || token.value > 1 {
|
||||||
t.Errorf("probability out of range [0,1]: got %f", token.value)
|
t.Errorf("probability out of range [0,1]: got %f", token.value)
|
||||||
|
@ -114,38 +120,44 @@ func TestSoftmax(t *testing.T) {
|
||||||
|
|
||||||
func TestTopK(t *testing.T) {
|
func TestTopK(t *testing.T) {
|
||||||
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||||
|
tokens := toTokens(input)
|
||||||
// Test k=5
|
tokens = topK(tokens, 5)
|
||||||
got := topK(toTokens(input), 5)
|
if len(tokens) != 5 {
|
||||||
if len(got) != 5 {
|
t.Errorf("topK(5): wrong length: want 5, got %d", len(tokens))
|
||||||
t.Errorf("topK(5): wrong length: want 5, got %d", len(got))
|
|
||||||
}
|
}
|
||||||
// Should keep highest 3 values in descending order
|
|
||||||
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154}
|
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154}
|
||||||
compareLogits(t, "topK(3)", want, got)
|
compareLogits(t, "topK(3)", want, tokens)
|
||||||
|
|
||||||
got = topK(toTokens(input), 20)
|
tokens = toTokens(input)
|
||||||
if len(got) != len(input) {
|
tokens = topK(tokens, 20)
|
||||||
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(got))
|
if len(tokens) != len(input) {
|
||||||
|
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(tokens))
|
||||||
}
|
}
|
||||||
|
|
||||||
// Test k=-1
|
|
||||||
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||||
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
|
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
|
||||||
got = topK(toTokens(input), -1)
|
tokens = toTokens(input)
|
||||||
if len(got) != len(input) {
|
tokens = topK(tokens, -1)
|
||||||
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
|
if len(tokens) != len(input) {
|
||||||
|
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(tokens))
|
||||||
}
|
}
|
||||||
compareLogits(t, "topK(-1)", want, got)
|
compareLogits(t, "topK(-1)", want, tokens)
|
||||||
|
|
||||||
// Test k=0
|
|
||||||
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||||
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
|
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
|
||||||
got = topK(toTokens(input), 0)
|
tokens = toTokens(input)
|
||||||
if len(got) != len(input) {
|
tokens = topK(tokens, 0)
|
||||||
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
|
if len(tokens) != len(input) {
|
||||||
|
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(tokens))
|
||||||
|
}
|
||||||
|
compareLogits(t, "topK(-1)", want, tokens)
|
||||||
|
|
||||||
|
input = []float32{-1e7, -2e7, -3e7, -4e7}
|
||||||
|
tokens = toTokens(input)
|
||||||
|
tokens = topK(tokens, 1)
|
||||||
|
if len(tokens) < 1 {
|
||||||
|
t.Error("topK should keep at least one token")
|
||||||
}
|
}
|
||||||
compareLogits(t, "topK(-1)", want, got)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestTopP(t *testing.T) {
|
func TestTopP(t *testing.T) {
|
||||||
|
@ -153,16 +165,25 @@ func TestTopP(t *testing.T) {
|
||||||
tokens := toTokens(input)
|
tokens := toTokens(input)
|
||||||
|
|
||||||
// First apply temperature and softmax to get probabilities
|
// First apply temperature and softmax to get probabilities
|
||||||
tokens = softmax(tokens)
|
softmax(tokens)
|
||||||
tokens = topK(tokens, 20)
|
tokens = topK(tokens, 20)
|
||||||
|
|
||||||
// Then apply topP
|
// Then apply topP
|
||||||
got := topP(tokens, 0.95)
|
tokens = topP(tokens, 0.95)
|
||||||
|
|
||||||
// Should keep tokens until cumsum > 0.95
|
// Should keep tokens until cumsum > 0.95
|
||||||
if len(got) > 3 {
|
if len(tokens) > 3 {
|
||||||
t.Errorf("topP(0.95): kept too many tokens: got %d", len(got))
|
t.Errorf("topP(0.95): kept too many tokens: got %d", len(tokens))
|
||||||
t.Logf("got: %v", got)
|
t.Logf("got: %v", tokens)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test edge case - ensure at least one token remains
|
||||||
|
input = []float32{-1e6, -1e6, -1e6} // One dominant token
|
||||||
|
tokens = toTokens(input)
|
||||||
|
softmax(tokens)
|
||||||
|
tokens = topP(tokens, 0.0) // Very small p
|
||||||
|
if len(tokens) < 1 {
|
||||||
|
t.Error("topP should keep at least one token")
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -171,14 +192,45 @@ func TestMinP(t *testing.T) {
|
||||||
tokens := toTokens(input)
|
tokens := toTokens(input)
|
||||||
|
|
||||||
// First apply temperature and softmax
|
// First apply temperature and softmax
|
||||||
tokens = softmax(tokens)
|
tokens = topK(tokens, 20)
|
||||||
|
softmax(tokens)
|
||||||
|
|
||||||
// Then apply minP
|
tokens = minP(tokens, 1.0)
|
||||||
got := minP(tokens, 0.2)
|
|
||||||
|
if len(tokens) != 1 {
|
||||||
|
t.Errorf("minP(1.0): should keep all tokens, got %d, want %d", len(tokens), len(tokens))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test with normal p value
|
||||||
|
tokens = toTokens(input) // Reset tokens
|
||||||
|
tokens = topK(tokens, 20)
|
||||||
|
softmax(tokens)
|
||||||
|
tokens = minP(tokens, 0.2)
|
||||||
|
|
||||||
// Should keep tokens with prob >= 0.2 * max_prob
|
// Should keep tokens with prob >= 0.2 * max_prob
|
||||||
if len(got) > 3 {
|
if len(tokens) > 3 {
|
||||||
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
|
t.Errorf("minP(0.2): kept too many tokens: got %d", len(tokens))
|
||||||
|
t.Logf("got: %v", tokens)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test with zero p value
|
||||||
|
tokens = toTokens(input) // Reset tokens
|
||||||
|
tokens = topK(tokens, 20)
|
||||||
|
softmax(tokens)
|
||||||
|
tokens = minP(tokens, 0.0)
|
||||||
|
|
||||||
|
// Should keep only the highest probability token
|
||||||
|
if len(tokens) != len(input) {
|
||||||
|
t.Errorf("minP(0.0): should keep only one token, got %d", len(tokens))
|
||||||
|
t.Logf("got: %v", tokens)
|
||||||
|
}
|
||||||
|
|
||||||
|
input = []float32{1e-10, 1e-10, 1e-10}
|
||||||
|
tokens = toTokens(input)
|
||||||
|
softmax(tokens)
|
||||||
|
tokens = minP(tokens, 1.0)
|
||||||
|
if len(tokens) < 1 {
|
||||||
|
t.Error("minP should keep at least one token even with extreme probabilities")
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -231,7 +283,7 @@ func BenchmarkTransforms(b *testing.B) {
|
||||||
b.ResetTimer()
|
b.ResetTimer()
|
||||||
for b.Loop() {
|
for b.Loop() {
|
||||||
copy(tokensCopy, tokens)
|
copy(tokensCopy, tokens)
|
||||||
topK(tokensCopy, 10)
|
tokens = topK(tokensCopy, 10)
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
|
|
||||||
|
@ -239,7 +291,7 @@ func BenchmarkTransforms(b *testing.B) {
|
||||||
b.ResetTimer()
|
b.ResetTimer()
|
||||||
for b.Loop() {
|
for b.Loop() {
|
||||||
copy(tokensCopy, tokens)
|
copy(tokensCopy, tokens)
|
||||||
topP(tokensCopy, 0.9)
|
tokens = topP(tokensCopy, 0.9)
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
|
|
||||||
|
@ -247,7 +299,7 @@ func BenchmarkTransforms(b *testing.B) {
|
||||||
b.ResetTimer()
|
b.ResetTimer()
|
||||||
for b.Loop() {
|
for b.Loop() {
|
||||||
copy(tokensCopy, tokens)
|
copy(tokensCopy, tokens)
|
||||||
minP(tokensCopy, 0.2)
|
tokens = minP(tokensCopy, 0.2)
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
|
|
||||||
|
@ -255,7 +307,7 @@ func BenchmarkTransforms(b *testing.B) {
|
||||||
b.ResetTimer()
|
b.ResetTimer()
|
||||||
for b.Loop() {
|
for b.Loop() {
|
||||||
copy(tokensCopy, tokens)
|
copy(tokensCopy, tokens)
|
||||||
topK(tokensCopy, 200000)
|
tokens = topK(tokensCopy, 200000)
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue