mirror of
https://github.com/ollama/ollama.git
synced 2025-05-11 18:36:41 +02:00
feat: qwen3 dense
This commit is contained in:
parent
3098c8b29b
commit
1546bc4767
2 changed files with 174 additions and 0 deletions
|
@ -7,4 +7,5 @@ import (
|
||||||
_ "github.com/ollama/ollama/model/models/llama4"
|
_ "github.com/ollama/ollama/model/models/llama4"
|
||||||
_ "github.com/ollama/ollama/model/models/mistral3"
|
_ "github.com/ollama/ollama/model/models/mistral3"
|
||||||
_ "github.com/ollama/ollama/model/models/mllama"
|
_ "github.com/ollama/ollama/model/models/mllama"
|
||||||
|
_ "github.com/ollama/ollama/model/models/qwen3"
|
||||||
)
|
)
|
||||||
|
|
173
model/models/qwen3/model.go
Normal file
173
model/models/qwen3/model.go
Normal file
|
@ -0,0 +1,173 @@
|
||||||
|
package qwen3
|
||||||
|
|
||||||
|
import (
|
||||||
|
"math"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs"
|
||||||
|
"github.com/ollama/ollama/kvcache"
|
||||||
|
"github.com/ollama/ollama/ml"
|
||||||
|
"github.com/ollama/ollama/ml/nn"
|
||||||
|
"github.com/ollama/ollama/model"
|
||||||
|
"github.com/ollama/ollama/model/input"
|
||||||
|
)
|
||||||
|
|
||||||
|
// NeoX-style rotary position embeddings
|
||||||
|
const ropeType uint32 = 2
|
||||||
|
|
||||||
|
type Options struct {
|
||||||
|
hiddenSize, numHeads, numKVHeads int
|
||||||
|
eps float32
|
||||||
|
ropeBase, ropeScale float32
|
||||||
|
}
|
||||||
|
|
||||||
|
func (o Options) headDim() int {
|
||||||
|
return o.hiddenSize / o.numHeads
|
||||||
|
}
|
||||||
|
|
||||||
|
type Attention struct {
|
||||||
|
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
|
||||||
|
Query *nn.Linear `gguf:"attn_q"`
|
||||||
|
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
|
||||||
|
Key *nn.Linear `gguf:"attn_k"`
|
||||||
|
Value *nn.Linear `gguf:"attn_v"`
|
||||||
|
Output *nn.Linear `gguf:"attn_output"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||||
|
batchSize := hiddenStates.Dim(1)
|
||||||
|
|
||||||
|
query := sa.Query.Forward(ctx, hiddenStates)
|
||||||
|
key := sa.Key.Forward(ctx, hiddenStates)
|
||||||
|
value := sa.Value.Forward(ctx, hiddenStates)
|
||||||
|
|
||||||
|
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
|
||||||
|
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
||||||
|
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
||||||
|
|
||||||
|
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
|
||||||
|
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
|
||||||
|
|
||||||
|
query = query.RoPE(ctx, positions, nil, uint32(opts.headDim()), ropeType, opts.ropeBase, opts.ropeScale)
|
||||||
|
key = key.RoPE(ctx, positions, nil, uint32(opts.headDim()), ropeType, opts.ropeBase, opts.ropeScale)
|
||||||
|
|
||||||
|
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
|
||||||
|
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
|
||||||
|
return sa.Output.Forward(ctx, attention)
|
||||||
|
}
|
||||||
|
|
||||||
|
type MLP struct {
|
||||||
|
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||||
|
Up *nn.Linear `gguf:"ffn_up"`
|
||||||
|
Down *nn.Linear `gguf:"ffn_down"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (mlp *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
|
||||||
|
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
|
||||||
|
return mlp.Down.Forward(ctx, hiddenStates)
|
||||||
|
}
|
||||||
|
|
||||||
|
type Layer struct {
|
||||||
|
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||||
|
*Attention
|
||||||
|
|
||||||
|
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||||
|
*MLP
|
||||||
|
}
|
||||||
|
|
||||||
|
func (d *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||||
|
residual := hiddenStates
|
||||||
|
hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
|
||||||
|
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
|
||||||
|
|
||||||
|
if outputs != nil {
|
||||||
|
hiddenStates = hiddenStates.Rows(ctx, outputs)
|
||||||
|
residual = residual.Rows(ctx, outputs)
|
||||||
|
}
|
||||||
|
|
||||||
|
hiddenStates = hiddenStates.Add(ctx, residual)
|
||||||
|
|
||||||
|
residual = hiddenStates
|
||||||
|
hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
|
||||||
|
hiddenStates = d.MLP.Forward(ctx, hiddenStates)
|
||||||
|
return hiddenStates.Add(ctx, residual)
|
||||||
|
}
|
||||||
|
|
||||||
|
type Model struct {
|
||||||
|
model.Base
|
||||||
|
model.BytePairEncoding
|
||||||
|
|
||||||
|
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||||
|
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||||
|
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||||
|
|
||||||
|
Layers []Layer `gguf:"blk"`
|
||||||
|
|
||||||
|
*Options
|
||||||
|
}
|
||||||
|
|
||||||
|
// Forward implements model.Model.
|
||||||
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||||
|
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||||
|
|
||||||
|
for i, layer := range m.Layers {
|
||||||
|
m.Cache.SetLayer(i)
|
||||||
|
|
||||||
|
var outputs ml.Tensor
|
||||||
|
if i == len(m.Layers)-1 {
|
||||||
|
outputs, err = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
|
||||||
|
}
|
||||||
|
|
||||||
|
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
|
||||||
|
return m.Output.Forward(ctx, hiddenStates), nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||||
|
return key.RoPE(ctx, shift, nil, ropeType, uint32(m.headDim()), m.ropeBase, m.ropeScale), nil
|
||||||
|
}
|
||||||
|
|
||||||
|
var _ model.Model = (*Model)(nil)
|
||||||
|
|
||||||
|
func New(c fs.Config) (model.Model, error) {
|
||||||
|
m := Model{
|
||||||
|
BytePairEncoding: model.NewBytePairEncoding(
|
||||||
|
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
|
||||||
|
&model.Vocabulary{
|
||||||
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||||
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
||||||
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||||
|
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
||||||
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||||||
|
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||||
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||||
|
},
|
||||||
|
),
|
||||||
|
Layers: make([]Layer, c.Uint("block_count")),
|
||||||
|
Options: &Options{
|
||||||
|
hiddenSize: int(c.Uint("embedding_length")),
|
||||||
|
numHeads: int(c.Uint("attention.head_count")),
|
||||||
|
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||||
|
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||||
|
ropeBase: c.Float("rope.freq_base"),
|
||||||
|
ropeScale: c.Float("rope.freq_scale", 1),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
m.Cache = kvcache.NewCausalCache(m.Shift)
|
||||||
|
return &m, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func init() {
|
||||||
|
model.Register("qwen3", New)
|
||||||
|
model.Register("qwen3moe", New)
|
||||||
|
}
|
Loading…
Add table
Add a link
Reference in a new issue