mirror of
https://github.com/ollama/ollama.git
synced 2025-05-12 19:07:06 +02:00
remove with
Signed-off-by: Matt Williams <m@technovangelist.com>
This commit is contained in:
parent
8a41b244e8
commit
385eeea357
22 changed files with 0 additions and 0 deletions
61
examples/langchain-python-rag-document/main.py
Normal file
61
examples/langchain-python-rag-document/main.py
Normal file
|
@ -0,0 +1,61 @@
|
|||
from langchain.document_loaders import OnlinePDFLoader
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.embeddings import GPT4AllEmbeddings
|
||||
from langchain import PromptTemplate
|
||||
from langchain.llms import Ollama
|
||||
from langchain.callbacks.manager import CallbackManager
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain.chains import RetrievalQA
|
||||
import sys
|
||||
import os
|
||||
|
||||
class SuppressStdout:
|
||||
def __enter__(self):
|
||||
self._original_stdout = sys.stdout
|
||||
self._original_stderr = sys.stderr
|
||||
sys.stdout = open(os.devnull, 'w')
|
||||
sys.stderr = open(os.devnull, 'w')
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
sys.stdout.close()
|
||||
sys.stdout = self._original_stdout
|
||||
sys.stderr = self._original_stderr
|
||||
|
||||
# load the pdf and split it into chunks
|
||||
loader = OnlinePDFLoader("https://d18rn0p25nwr6d.cloudfront.net/CIK-0001813756/975b3e9b-268e-4798-a9e4-2a9a7c92dc10.pdf")
|
||||
data = loader.load()
|
||||
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
||||
all_splits = text_splitter.split_documents(data)
|
||||
|
||||
with SuppressStdout():
|
||||
vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings())
|
||||
|
||||
while True:
|
||||
query = input("\nQuery: ")
|
||||
if query == "exit":
|
||||
break
|
||||
if query.strip() == "":
|
||||
continue
|
||||
|
||||
# Prompt
|
||||
template = """Use the following pieces of context to answer the question at the end.
|
||||
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
||||
Use three sentences maximum and keep the answer as concise as possible.
|
||||
{context}
|
||||
Question: {question}
|
||||
Helpful Answer:"""
|
||||
QA_CHAIN_PROMPT = PromptTemplate(
|
||||
input_variables=["context", "question"],
|
||||
template=template,
|
||||
)
|
||||
|
||||
llm = Ollama(model="llama2:13b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
|
||||
qa_chain = RetrievalQA.from_chain_type(
|
||||
llm,
|
||||
retriever=vectorstore.as_retriever(),
|
||||
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
|
||||
)
|
||||
|
||||
result = qa_chain({"query": query})
|
Loading…
Add table
Add a link
Reference in a new issue