Move quantization to new backend (#10363)

* Move quantization logic to GGML via new backend

This moves the model aware logic to Go code and calls GGMLs quantization code for model creation.

* Remove "add model quantizations"

This is no longer needed now that quantization is implemented in Go+GGML code directly.
This commit is contained in:
Daniel Hiltgen 2025-05-06 11:20:48 -07:00 committed by GitHub
parent 95e744beeb
commit 424810450f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
39 changed files with 1854 additions and 440 deletions

View file

@ -162,7 +162,11 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
if resp.Digest != "" {
bar, ok := bars[resp.Digest]
if !ok {
bar = progress.NewBar(fmt.Sprintf("pulling %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
msg := resp.Status
if msg == "" {
msg = fmt.Sprintf("pulling %s...", resp.Digest[7:19])
}
bar = progress.NewBar(msg, resp.Total, resp.Completed)
bars[resp.Digest] = bar
p.Add(resp.Digest, bar)
}

View file

@ -4,9 +4,9 @@ import (
"encoding/json"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"slices"
"strings"
@ -89,7 +89,7 @@ type ModelConverter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) ggml.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []ggml.Tensor
Tensors([]Tensor) []*ggml.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
@ -106,13 +106,13 @@ type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(ggml.KV) ggml.KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []ggml.Tensor
Tensors([]Tensor) []*ggml.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
}
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV ggml.KV) error {
func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err
@ -147,14 +147,14 @@ func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV ggml.KV) error {
return err
}
return writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
return writeFile(f, conv.KV(baseKV), conv.Tensors(ts))
}
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path.
// Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
func ConvertModel(fsys fs.FS, f *os.File) error {
bts, err := fs.ReadFile(fsys, "config.json")
if err != nil {
return err
@ -239,13 +239,13 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
return err
}
return writeFile(ws, conv.KV(t), conv.Tensors(ts))
return writeFile(f, conv.KV(t), conv.Tensors(ts))
}
func writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
func writeFile(f *os.File, kv ggml.KV, ts []*ggml.Tensor) error {
for i := range ts {
ts[i].Shape = slices.Clone(ts[i].Shape)
slices.Reverse(ts[i].Shape)
}
return ggml.WriteGGUF(ws, kv, ts)
return ggml.WriteGGUF(f, kv, ts)
}

View file

@ -132,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
@ -143,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor {
continue
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View file

@ -43,10 +43,10 @@ func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *commandrModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *commandrModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View file

@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *gemmaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View file

@ -21,8 +21,8 @@ func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
return kv
}
func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View file

@ -126,11 +126,11 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
if p.RopeScaling.factors != nil {
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: "rope_freqs.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
@ -145,7 +145,7 @@ func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
}
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View file

@ -88,13 +88,13 @@ func (p *llama4Model) Replacements() []string {
}
// Tensors implements ModelConverter.
func (p *llama4Model) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
var textTensors []Tensor
for _, t := range ts {
if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
@ -112,7 +112,7 @@ func (p *llama4Model) Tensors(ts []Tensor) []ggml.Tensor {
// clone tensor since we need separate repackers
tt := t.Clone()
tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
Kind: tt.Kind(),
Shape: newShape,
@ -125,7 +125,7 @@ func (p *llama4Model) Tensors(ts []Tensor) []ggml.Tensor {
t.SetRepacker(p.repack())
newShape := slices.Clone(t.Shape())
newShape[1], newShape[2] = newShape[2], newShape[1]
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: newShape,

View file

@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
return kv
}
func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,

View file

@ -89,8 +89,8 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *mistral3Model) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (p *mistral3Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") {
@ -100,7 +100,7 @@ func (p *mistral3Model) Tensors(ts []Tensor) []ggml.Tensor {
}
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View file

@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor {
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor {
return true
})
var out []ggml.Tensor
var out []*ggml.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),

View file

@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
return kv
}
func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor {
func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
var addRopeFactors sync.Once
out := make([]ggml.Tensor, 0, len(ts)+2)
out := make([]*ggml.Tensor, 0, len(ts)+2)
for _, t := range ts {
if strings.HasPrefix(t.Name(), "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: "rope_factors_long.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
WriterTo: p.RopeScaling.LongFactor,
}, ggml.Tensor{
}, &ggml.Tensor{
Name: "rope_factors_short.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor {
})
}
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View file

@ -45,10 +45,10 @@ func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
return kv
}
func (q *qwen2Model) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
func (q *qwen2Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
out = append(out, ggml.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View file

@ -36,12 +36,12 @@ func (kv KV) ParameterCount() uint64 {
return keyValue(kv, "general.parameter_count", uint64(0))
}
func (kv KV) FileType() fileType {
func (kv KV) FileType() FileType {
if t := kv.Uint("general.file_type"); t > 0 {
return fileType(t)
return FileType(t)
}
return fileTypeUnknown
return FileTypeUnknown
}
func (kv KV) BlockCount() uint64 {
@ -226,7 +226,11 @@ func (t Tensor) block() (n int) {
}
func (t Tensor) blockSize() uint64 {
switch t.Kind {
return (TensorType)(t.Kind).BlockSize()
}
func (t TensorType) BlockSize() uint64 {
switch t {
case
0, // F32
1, // F16
@ -252,73 +256,77 @@ func (t Tensor) blockSize() uint64 {
}
func (t Tensor) typeSize() uint64 {
blockSize := t.blockSize()
return TensorType(t.Kind).TypeSize()
}
switch t.Kind {
case 0: // FP32
func (t TensorType) TypeSize() uint64 {
blockSize := t.BlockSize()
switch t {
case TensorTypeF32:
return 4
case 1: // FP16
case TensorTypeF16:
return 2
case 2: // Q4_0
case TensorTypeQ4_0:
return 2 + blockSize/2
case 3: // Q4_1
case TensorTypeQ4_1:
return 2 + 2 + blockSize/2
case 6: // Q5_0
case TensorTypeQ5_0:
return 2 + 4 + blockSize/2
case 7: // Q5_1
case TensorTypeQ5_1:
return 2 + 2 + 4 + blockSize/2
case 8: // Q8_0
case TensorTypeQ8_0:
return 2 + blockSize
case 9: // Q8_1
case TensorTypeQ8_1:
return 2 + 2 + blockSize
case 10: // Q2_K
case TensorTypeQ2_K:
return blockSize/16 + blockSize/4 + 2 + 2
case 11: // Q3_K
case TensorTypeQ3_K:
return blockSize/8 + blockSize/4 + 12 + 2
case 12: // Q4_K
case TensorTypeQ4_K:
return 2 + 2 + 12 + blockSize/2
case 13: // Q5_K
case TensorTypeQ5_K:
return 2 + 2 + 12 + blockSize/8 + blockSize/2
case 14: // Q6_K
case TensorTypeQ6_K:
return blockSize/2 + blockSize/4 + blockSize/16 + 2
case 15: // Q8_K
case TensorTypeQ8_K:
return 4 + blockSize + 2*blockSize/16
case 16: // IQ2_XXS
case tensorTypeIQ2_XXS:
return 2 + 2*blockSize/8
case 17: // IQ2_XS
case tensorTypeIQ2_XS:
return 2 + 2*blockSize/8 + blockSize/32
case 18: // IQ3_XXS
case tensorTypeIQ3_XXS:
return 2 + blockSize/4 + blockSize/8
case 19: // IQ1_S
case tensorTypeIQ1_S:
return 2 + blockSize/8 + blockSize/16
case 20: // IQ4_NL
case tensorTypeIQ4_NL:
return 2 + blockSize/2
case 21: // IQ3_S
case tensorTypeIQ3_S:
return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
case 22: // IQ2_S
case tensorTypeIQ2_S:
return 2 + blockSize/4 + blockSize/16
case 23: // IQ4_XS
case tensorTypeIQ4_XS:
return 2 + 2 + blockSize/2 + blockSize/64
case 24: // I8
case TensorTypeI8:
return 1
case 25: // I16
case TensorTypeI16:
return 2
case 26: // I32
case TensorTypeI32:
return 4
case 27: // I64
case TensorTypeI64:
return 8
case 28: // F64
case TensorTypeF64:
return 8
case 29: // IQ1_M
case tensorTypeIQ1_M:
return blockSize/8 + blockSize/16 + blockSize/32
case 30: // BF16
case TensorTypeBF16:
return 2
default:
return 0
}
}
func (t Tensor) parameters() uint64 {
func (t Tensor) Elements() uint64 {
var count uint64 = 1
for _, n := range t.Shape {
count *= n
@ -327,11 +335,11 @@ func (t Tensor) parameters() uint64 {
}
func (t Tensor) Size() uint64 {
return t.parameters() * t.typeSize() / t.blockSize()
return t.Elements() * t.typeSize() / t.blockSize()
}
func (t Tensor) Type() string {
return fileType(t.Kind).String()
return TensorType(t.Kind).String()
}
type container interface {
@ -480,7 +488,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
var ropeFreqsCount uint64
if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
ropeFreqsCount = ropeFreqsWeights.parameters()
ropeFreqsCount = ropeFreqsWeights.Elements()
}
}

View file

@ -9,8 +9,12 @@ import (
"io"
"log/slog"
"maps"
"os"
"runtime"
"slices"
"strings"
"golang.org/x/sync/errgroup"
)
type containerGGUF struct {
@ -225,7 +229,7 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
}
llm.tensors = append(llm.tensors, &tensor)
llm.parameters += tensor.parameters()
llm.parameters += tensor.Elements()
}
// patch KV with parameter count
@ -488,25 +492,38 @@ func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
return err
}
if t == ggufTypeString {
for _, e := range any(s).([]string) {
if err := binary.Write(w, binary.LittleEndian, uint64(len(e))); err != nil {
return err
}
if err := binary.Write(w, binary.LittleEndian, []byte(e)); err != nil {
return err
}
}
return nil
}
return binary.Write(w, binary.LittleEndian, s)
}
func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
alignment := kv.Uint("general.alignment", 32)
if err := binary.Write(ws, binary.LittleEndian, []byte("GGUF")); err != nil {
if err := binary.Write(f, binary.LittleEndian, []byte("GGUF")); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint32(3)); err != nil {
if err := binary.Write(f, binary.LittleEndian, uint32(3)); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(ts))); err != nil {
if err := binary.Write(f, binary.LittleEndian, uint64(len(ts))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(kv))); err != nil {
if err := binary.Write(f, binary.LittleEndian, uint64(len(kv))); err != nil {
return err
}
@ -514,12 +531,12 @@ func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
slices.Sort(keys)
for _, key := range keys {
if err := ggufWriteKV(ws, key, kv[key]); err != nil {
if err := ggufWriteKV(f, key, kv[key]); err != nil {
return err
}
}
slices.SortStableFunc(ts, func(a, b Tensor) int {
slices.SortStableFunc(ts, func(a, b *Tensor) int {
if i, j := a.block(), b.block(); i < 0 && j > 0 {
return 1
} else if i > 0 && j < 0 {
@ -530,22 +547,34 @@ func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
})
var s uint64
for _, t := range ts {
t.Offset = s
if err := ggufWriteTensorInfo(ws, t); err != nil {
for i := range ts {
ts[i].Offset = s
if err := ggufWriteTensorInfo(f, ts[i]); err != nil {
return err
}
s += t.Size()
s += ts[i].Size()
s += uint64(ggufPadding(int64(s), int64(alignment)))
}
offset, err := f.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
offset += ggufPadding(offset, int64(alignment))
var g errgroup.Group
g.SetLimit(runtime.GOMAXPROCS(0))
// TODO consider reducing if tensors size * gomaxprocs is larger than free memory
for _, t := range ts {
if err := ggufWriteTensor(ws, t, int64(alignment)); err != nil {
t := t
w := io.NewOffsetWriter(f, offset+int64(t.Offset))
g.Go(func() error {
_, err = t.WriteTo(w)
return err
}
})
}
return nil
return g.Wait()
}
func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
@ -560,8 +589,10 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
var err error
switch v := v.(type) {
case uint32:
case uint32, FileType:
err = writeGGUF(ws, ggufTypeUint32, v)
case uint64:
err = writeGGUF(ws, ggufTypeUint64, v)
case float32:
err = writeGGUF(ws, ggufTypeFloat32, v)
case bool:
@ -570,32 +601,20 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
err = writeGGUFString(ws, v)
case []int32:
err = writeGGUFArray(ws, ggufTypeInt32, v)
case *array[int32]:
err = writeGGUFArray(ws, ggufTypeInt32, v.values)
case []uint32:
err = writeGGUFArray(ws, ggufTypeUint32, v)
case *array[uint32]:
err = writeGGUFArray(ws, ggufTypeUint32, v.values)
case []float32:
err = writeGGUFArray(ws, ggufTypeFloat32, v)
case *array[float32]:
err = writeGGUFArray(ws, ggufTypeFloat32, v.values)
case []string:
if err := binary.Write(ws, binary.LittleEndian, ggufTypeArray); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, ggufTypeString); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(v))); err != nil {
return err
}
for _, e := range v {
if err := binary.Write(ws, binary.LittleEndian, uint64(len(e))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, []byte(e)); err != nil {
return err
}
}
err = writeGGUFArray(ws, ggufTypeString, v)
case *array[string]:
err = writeGGUFArray(ws, ggufTypeString, v.values)
default:
return fmt.Errorf("improper type for '%s'", k)
}
@ -603,7 +622,7 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
return err
}
func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
func ggufWriteTensorInfo(ws io.WriteSeeker, t *Tensor) error {
slog.Debug(t.Name, "kind", t.Kind, "shape", t.Shape, "offset", t.Offset)
if err := binary.Write(ws, binary.LittleEndian, uint64(len(t.Name))); err != nil {
return err
@ -630,20 +649,6 @@ func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
return binary.Write(ws, binary.LittleEndian, t.Offset)
}
func ggufWriteTensor(ws io.WriteSeeker, t Tensor, alignment int64) error {
offset, err := ws.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(ggufPadding(offset, alignment)))); err != nil {
return err
}
_, err = t.WriteTo(ws)
return err
}
func ggufPadding(offset, align int64) int64 {
return (align - offset%align) % align
}

View file

@ -18,7 +18,7 @@ func TestWriteGGUF(t *testing.T) {
if err := WriteGGUF(w, KV{
"general.alignment": uint32(16),
}, []Tensor{
}, []*Tensor{
{Name: "test.0", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.1", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},
{Name: "test.2", Shape: []uint64{2, 3}, WriterTo: bytes.NewBuffer(slices.Repeat([]byte{0}, 2*3*4))},

View file

@ -1,185 +1,341 @@
package ggml
import "fmt"
type fileType uint32
const (
fileTypeF32 fileType = iota
fileTypeF16
fileTypeQ4_0
fileTypeQ4_1
fileTypeQ4_1_F16
fileTypeQ4_2 // unused
fileTypeQ4_3 // unused
fileTypeQ8_0
fileTypeQ5_0
fileTypeQ5_1
fileTypeQ2_K
fileTypeQ3_K_S
fileTypeQ3_K_M
fileTypeQ3_K_L
fileTypeQ4_K_S
fileTypeQ4_K_M
fileTypeQ5_K_S
fileTypeQ5_K_M
fileTypeQ6_K
fileTypeIQ2_XXS
fileTypeIQ2_XS
fileTypeQ2_K_S
fileTypeIQ3_XS
fileTypeIQ3_XXS
fileTypeIQ1_S
fileTypeIQ4_NL
fileTypeIQ3_S
fileTypeIQ3_M
fileTypeIQ2_S
fileTypeIQ2_M
fileTypeIQ4_XS
fileTypeIQ1_M
fileTypeBF16
fileTypeUnknown
import (
"fmt"
"log/slog"
"strings"
)
func ParseFileType(s string) (fileType, error) {
// FileType is the Go equivalent to llama_ftype used for gguf file typing
type FileType uint32
const (
FileTypeF32 FileType = iota
FileTypeF16
FileTypeQ4_0
FileTypeQ4_1
fileTypeQ4_1_F16 // unused by GGML
fileTypeQ4_2 // unused by GGML
fileTypeQ4_3 // unused by GGML
FileTypeQ8_0
FileTypeQ5_0
FileTypeQ5_1
FileTypeQ2_K
FileTypeQ3_K_S
FileTypeQ3_K_M
FileTypeQ3_K_L
FileTypeQ4_K_S
FileTypeQ4_K_M
FileTypeQ5_K_S
FileTypeQ5_K_M
FileTypeQ6_K
fileTypeIQ2_XXS // not supported by ollama
fileTypeIQ2_XS // not supported by ollama
FileTypeQ2_K_S
fileTypeIQ3_XS // not supported by ollama
fileTypeIQ3_XXS // not supported by ollama
fileTypeIQ1_S // not supported by ollama
fileTypeIQ4_NL // not supported by ollama
fileTypeIQ3_S // not supported by ollama
fileTypeIQ3_M // not supported by ollama
fileTypeIQ2_S // not supported by ollama
fileTypeIQ2_M // not supported by ollama
fileTypeIQ4_XS // not supported by ollama
fileTypeIQ1_M // not supported by ollama
FileTypeBF16
fileTypeQ4_0_4_4 // unused by GGML
fileTypeQ4_0_4_8 // unused by GGML
fileTypeQ4_0_8_8 // unused by GGML
fileTypeTQ1_0 // not supported by ollama
fileTypeTQ2_0 // not supported by ollama
FileTypeUnknown = 1024
)
// ParseFileType parses the provided GGUF file type
// Only Ollama supported types are considered valid
func ParseFileType(s string) (FileType, error) {
switch s {
case "F32":
return fileTypeF32, nil
return FileTypeF32, nil
case "F16":
return fileTypeF16, nil
return FileTypeF16, nil
case "Q4_0":
return fileTypeQ4_0, nil
return FileTypeQ4_0, nil
case "Q4_1":
return fileTypeQ4_1, nil
case "Q4_1_F16":
return fileTypeQ4_1_F16, nil
return FileTypeQ4_1, nil
case "Q8_0":
return fileTypeQ8_0, nil
return FileTypeQ8_0, nil
case "Q5_0":
return fileTypeQ5_0, nil
return FileTypeQ5_0, nil
case "Q5_1":
return fileTypeQ5_1, nil
return FileTypeQ5_1, nil
case "Q2_K":
return fileTypeQ2_K, nil
return FileTypeQ2_K, nil
case "Q3_K_S":
return fileTypeQ3_K_S, nil
return FileTypeQ3_K_S, nil
case "Q3_K_M":
return fileTypeQ3_K_M, nil
return FileTypeQ3_K_M, nil
case "Q3_K_L":
return fileTypeQ3_K_L, nil
return FileTypeQ3_K_L, nil
case "Q4_K_S":
return fileTypeQ4_K_S, nil
case "Q4_K_M":
return fileTypeQ4_K_M, nil
return FileTypeQ4_K_S, nil
case "Q4_K_M", "Q4_K":
return FileTypeQ4_K_M, nil
case "Q5_K_S":
return fileTypeQ5_K_S, nil
case "Q5_K_M":
return fileTypeQ5_K_M, nil
return FileTypeQ5_K_S, nil
case "Q5_K_M", "Q5_K":
return FileTypeQ5_K_M, nil
case "Q6_K":
return fileTypeQ6_K, nil
case "IQ2_XXS":
return fileTypeIQ2_XXS, nil
case "IQ2_XS":
return fileTypeIQ2_XS, nil
return FileTypeQ6_K, nil
case "Q2_K_S":
return fileTypeQ2_K_S, nil
case "IQ3_XS":
return fileTypeIQ3_XS, nil
case "IQ3_XXS":
return fileTypeIQ3_XXS, nil
case "IQ1_S":
return fileTypeIQ1_S, nil
case "IQ4_NL":
return fileTypeIQ4_NL, nil
case "IQ3_S":
return fileTypeIQ3_S, nil
case "IQ3_M":
return fileTypeIQ3_M, nil
case "IQ2_S":
return fileTypeIQ2_S, nil
case "IQ2_M":
return fileTypeIQ2_M, nil
case "IQ4_XS":
return fileTypeIQ4_XS, nil
case "IQ1_M":
return fileTypeIQ1_M, nil
return FileTypeQ2_K_S, nil
case "BF16":
return fileTypeBF16, nil
return FileTypeBF16, nil
default:
return fileTypeUnknown, fmt.Errorf("unknown fileType: %s", s)
supportedFileTypes := []FileType{
FileTypeF32,
FileTypeF16,
FileTypeQ4_K_S,
FileTypeQ4_K_M,
FileTypeQ8_0,
// fsggml.FileTypeBF16, // TODO
}
strs := make([]string, len(supportedFileTypes))
for i := range supportedFileTypes {
strs[i] = supportedFileTypes[i].String()
}
return FileTypeUnknown, fmt.Errorf("unsupported quantization type %s - supported types are %s", s, strings.Join(strs, ", "))
}
}
func (t fileType) String() string {
func (t FileType) String() string {
switch t {
case fileTypeF32:
case FileTypeF32:
return "F32"
case fileTypeF16:
case FileTypeF16:
return "F16"
case fileTypeQ4_0:
case FileTypeQ4_0:
return "Q4_0"
case fileTypeQ4_1:
case FileTypeQ4_1:
return "Q4_1"
case fileTypeQ4_1_F16:
return "Q4_1_F16"
case fileTypeQ8_0:
case FileTypeQ8_0:
return "Q8_0"
case fileTypeQ5_0:
case FileTypeQ5_0:
return "Q5_0"
case fileTypeQ5_1:
case FileTypeQ5_1:
return "Q5_1"
case fileTypeQ2_K:
case FileTypeQ2_K:
return "Q2_K"
case fileTypeQ3_K_S:
case FileTypeQ3_K_S:
return "Q3_K_S"
case fileTypeQ3_K_M:
case FileTypeQ3_K_M:
return "Q3_K_M"
case fileTypeQ3_K_L:
case FileTypeQ3_K_L:
return "Q3_K_L"
case fileTypeQ4_K_S:
case FileTypeQ4_K_S:
return "Q4_K_S"
case fileTypeQ4_K_M:
case FileTypeQ4_K_M:
return "Q4_K_M"
case fileTypeQ5_K_S:
case FileTypeQ5_K_S:
return "Q5_K_S"
case fileTypeQ5_K_M:
case FileTypeQ5_K_M:
return "Q5_K_M"
case fileTypeQ6_K:
case FileTypeQ6_K:
return "Q6_K"
case fileTypeIQ2_XXS:
return "IQ2_XXS"
case fileTypeIQ2_XS:
return "IQ2_XS"
case fileTypeQ2_K_S:
case FileTypeQ2_K_S:
return "Q2_K_S"
case fileTypeIQ3_XS:
return "IQ3_XS"
case fileTypeIQ3_XXS:
return "IQ3_XXS"
case fileTypeIQ1_S:
return "IQ1_S"
case fileTypeIQ4_NL:
return "IQ4_NL"
case fileTypeIQ3_S:
return "IQ3_S"
case fileTypeIQ3_M:
return "IQ3_M"
case fileTypeIQ2_S:
return "IQ2_S"
case fileTypeIQ4_XS:
return "IQ4_XS"
case fileTypeIQ2_M:
return "IQ2_M"
case fileTypeIQ1_M:
return "IQ1_M"
case fileTypeBF16:
case FileTypeBF16:
return "BF16"
default:
return "unknown"
}
}
func (t fileType) Value() uint32 {
func (t FileType) Value() uint32 {
return uint32(t)
}
func (ftype FileType) ToTensorType() TensorType {
switch ftype {
case FileTypeF32:
return TensorTypeF32
case FileTypeF16:
return TensorTypeF16
case FileTypeQ4_0:
return TensorTypeQ4_0
case FileTypeQ4_1:
return TensorTypeQ4_1
case FileTypeQ8_0:
return TensorTypeQ8_0
case FileTypeQ5_0:
return TensorTypeQ5_0
case FileTypeQ5_1:
return TensorTypeQ5_1
case FileTypeQ2_K:
return TensorTypeQ2_K
case FileTypeQ3_K_S:
return TensorTypeQ3_K
case FileTypeQ3_K_M:
return TensorTypeQ3_K
case FileTypeQ3_K_L:
return TensorTypeQ3_K
case FileTypeQ4_K_S:
return TensorTypeQ4_K
case FileTypeQ4_K_M:
return TensorTypeQ4_K
case FileTypeQ5_K_S:
return TensorTypeQ5_K
case FileTypeQ5_K_M:
return TensorTypeQ5_K
case FileTypeQ6_K:
return TensorTypeQ6_K
case FileTypeQ2_K_S:
return TensorTypeQ2_K
case FileTypeBF16:
return TensorTypeBF16
default:
slog.Warn("unsupported file type", "type", ftype)
return 0 // F32
}
}
// TensorType is equivalent to ggml_type for individual tensor types
// Note: these are not the same as FileType
type TensorType uint32
const (
TensorTypeF32 TensorType = iota
TensorTypeF16
TensorTypeQ4_0
TensorTypeQ4_1
tensorTypeQ4_2 // unused by GGML
tensorTypeQ4_3 // unused by GGML
TensorTypeQ5_0
TensorTypeQ5_1
TensorTypeQ8_0
TensorTypeQ8_1
TensorTypeQ2_K
TensorTypeQ3_K
TensorTypeQ4_K
TensorTypeQ5_K
TensorTypeQ6_K
TensorTypeQ8_K
tensorTypeIQ2_XXS // not supported by ollama
tensorTypeIQ2_XS // not supported by ollama
tensorTypeIQ3_XXS // not supported by ollama
tensorTypeIQ1_S // not supported by ollama
tensorTypeIQ4_NL // not supported by ollama
tensorTypeIQ3_S // not supported by ollama
tensorTypeIQ2_S // not supported by ollama
tensorTypeIQ4_XS // not supported by ollama
TensorTypeI8
TensorTypeI16
TensorTypeI32
TensorTypeI64
TensorTypeF64
tensorTypeIQ1_M // not supported by ollama
TensorTypeBF16
tensorTypeQ4_0_4_4 // unused by GGML
tensorTypeQ4_0_4_8 // unused by GGML
tensorTypeQ4_0_8_8 // unused by GGML
tensorTypeTQ1_0 // not supported by ollama
tensorTypeTQ2_0 // not supported by ollama
tensorTypeIQ4_NL_4_4 // unused by GGML
tensorTypeIQ4_NL_4_8 // unused by GGML
tensorTypeIQ4_NL_8_8 // unused by GGML
)
// ParseFileType parses the provided GGUF file type
// Only Ollama supported types are considered valid
func ParseTensorType(s string) (TensorType, error) {
switch s {
case "F32":
return TensorTypeF32, nil
case "F16":
return TensorTypeF16, nil
case "Q4_0":
return TensorTypeQ4_0, nil
case "Q4_1":
return TensorTypeQ4_1, nil
case "Q5_0":
return TensorTypeQ5_0, nil
case "Q5_1":
return TensorTypeQ5_1, nil
case "Q8_0":
return TensorTypeQ8_0, nil
case "Q8_1":
return TensorTypeQ8_1, nil
case "Q2_K":
return TensorTypeQ2_K, nil
case "Q3_K":
return TensorTypeQ3_K, nil
case "Q4_K":
return TensorTypeQ4_K, nil
case "Q5_K":
return TensorTypeQ5_K, nil
case "Q6_K":
return TensorTypeQ6_K, nil
case "Q8_K":
return TensorTypeQ8_K, nil
case "F64":
return TensorTypeF64, nil
case "BF16":
return TensorTypeBF16, nil
default:
return 0, fmt.Errorf("unsupported quantization type %s", s)
}
}
func (t TensorType) IsQuantized() bool {
switch t {
case TensorTypeF32, TensorTypeF16, TensorTypeBF16:
return false
default:
return true
}
}
func (t TensorType) RowSize(ne uint64) uint64 {
return t.TypeSize() * ne / t.BlockSize()
}
func (t TensorType) String() string {
switch t {
case TensorTypeF32:
return "F32"
case TensorTypeF16:
return "F16"
case TensorTypeQ4_0:
return "Q4_0"
case TensorTypeQ4_1:
return "Q4_1"
case TensorTypeQ5_0:
return "Q5_0"
case TensorTypeQ5_1:
return "Q5_1"
case TensorTypeQ8_0:
return "Q8_0"
case TensorTypeQ8_1:
return "Q8_1"
case TensorTypeQ2_K:
return "Q2_K"
case TensorTypeQ3_K:
return "Q3_K"
case TensorTypeQ4_K:
return "Q4_K"
case TensorTypeQ5_K:
return "Q5_K"
case TensorTypeQ6_K:
return "Q6_K"
case TensorTypeQ8_K:
return "Q8_K"
case TensorTypeF64:
return "F64"
case TensorTypeBF16:
return "BF16"
default:
return "unknown"
}
}

View file

@ -48,17 +48,6 @@ var (
}
)
func getTimeouts(t *testing.T) (soft time.Duration, hard time.Duration) {
deadline, hasDeadline := t.Deadline()
if !hasDeadline {
return 8 * time.Minute, 10 * time.Minute
} else if deadline.Compare(time.Now().Add(2*time.Minute)) <= 0 {
t.Skip("too little time")
return time.Duration(0), time.Duration(0)
}
return -time.Since(deadline.Add(-2 * time.Minute)), -time.Since(deadline.Add(-20 * time.Second))
}
func TestModelsGenerate(t *testing.T) {
softTimeout, hardTimeout := getTimeouts(t)
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)

View file

@ -0,0 +1,130 @@
//go:build integration && models
package integration
import (
"bytes"
"context"
"fmt"
"log/slog"
"strings"
"testing"
"time"
"github.com/ollama/ollama/api"
)
func TestQuantization(t *testing.T) {
sourceModels := []string{
"qwen2.5:0.5b-instruct-fp16",
}
quantizations := []string{
"Q8_0",
"Q4_K_S",
"Q4_K_M",
"Q4_K",
}
softTimeout, hardTimeout := getTimeouts(t)
started := time.Now()
slog.Info("Setting timeouts", "soft", softTimeout, "hard", hardTimeout)
ctx, cancel := context.WithTimeout(context.Background(), hardTimeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, base := range sourceModels {
if err := PullIfMissing(ctx, client, base); err != nil {
t.Fatalf("pull failed %s", err)
}
for _, quant := range quantizations {
newName := fmt.Sprintf("%s__%s", base, quant)
t.Run(newName, func(t *testing.T) {
if time.Now().Sub(started) > softTimeout {
t.Skip("skipping remaining tests to avoid excessive runtime")
}
req := &api.CreateRequest{
Model: newName,
Quantization: quant,
From: base,
}
fn := func(resp api.ProgressResponse) error {
// fmt.Print(".")
return nil
}
t.Logf("quantizing: %s -> %s", base, quant)
if err := client.Create(ctx, req, fn); err != nil {
t.Fatalf("create failed %s", err)
}
defer func() {
req := &api.DeleteRequest{
Model: newName,
}
t.Logf("deleting: %s -> %s", base, quant)
if err := client.Delete(ctx, req); err != nil {
t.Logf("failed to clean up %s: %s", req.Model, err)
}
}()
// Check metadata on the model
resp, err := client.Show(ctx, &api.ShowRequest{Name: newName})
if err != nil {
t.Fatalf("unable to show model: %s", err)
}
if !strings.Contains(resp.Details.QuantizationLevel, quant) {
t.Fatalf("unexpected quantization for %s:\ngot: %s", newName, resp.Details.QuantizationLevel)
}
stream := true
genReq := api.GenerateRequest{
Model: newName,
Prompt: "why is the sky blue?",
KeepAlive: &api.Duration{Duration: 3 * time.Second},
Options: map[string]any{
"seed": 42,
"temperature": 0.0,
},
Stream: &stream,
}
t.Logf("verifying: %s -> %s", base, quant)
// Some smaller quantizations can cause models to have poor quality
// or get stuck in repetition loops, so we stop as soon as we have any matches
anyResp := []string{"rayleigh", "scattering", "day", "sun", "moon", "color", "nitrogen", "oxygen"}
reqCtx, reqCancel := context.WithCancel(ctx)
atLeastOne := false
var buf bytes.Buffer
genfn := func(response api.GenerateResponse) error {
buf.Write([]byte(response.Response))
fullResp := strings.ToLower(buf.String())
for _, resp := range anyResp {
if strings.Contains(fullResp, resp) {
atLeastOne = true
t.Log(fullResp)
reqCancel()
break
}
}
return nil
}
done := make(chan int)
var genErr error
go func() {
genErr = client.Generate(reqCtx, &genReq, genfn)
done <- 0
}()
select {
case <-done:
if genErr != nil && !atLeastOne {
t.Fatalf("failed with %s request prompt %s ", genReq.Model, genReq.Prompt)
}
case <-ctx.Done():
t.Error("outer test context done while waiting for generate")
}
t.Logf("passed")
})
}
}
}

View file

@ -359,3 +359,14 @@ func skipUnderMinVRAM(t *testing.T, gb uint64) {
}
}
}
func getTimeouts(t *testing.T) (soft time.Duration, hard time.Duration) {
deadline, hasDeadline := t.Deadline()
if !hasDeadline {
return 8 * time.Minute, 10 * time.Minute
} else if deadline.Compare(time.Now().Add(2*time.Minute)) <= 0 {
t.Skip("too little time")
return time.Duration(0), time.Duration(0)
}
return -time.Since(deadline.Add(-2 * time.Minute)), -time.Since(deadline.Add(-20 * time.Second))
}

View file

@ -74,7 +74,6 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
{ LLM_ARCH_PLM, "plm" },
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
{ LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@ -1607,22 +1606,6 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
{
LLM_ARCH_MISTRAL3,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
}
},
{
LLM_ARCH_UNKNOWN,
{

View file

@ -76,7 +76,6 @@ enum llm_arch {
LLM_ARCH_CHAMELEON,
LLM_ARCH_SOLAR,
LLM_ARCH_WAVTOKENIZER_DEC,
LLM_ARCH_MISTRAL3,
LLM_ARCH_PLM,
LLM_ARCH_BAILINGMOE,
LLM_ARCH_UNKNOWN,

View file

@ -1437,7 +1437,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_MISTRAL3: break;
default: throw std::runtime_error("unsupported model architecture");
}
@ -13752,7 +13751,6 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_CHAMELEON:
case LLM_ARCH_SOLAR:
case LLM_ARCH_BAILINGMOE:
case LLM_ARCH_MISTRAL3:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2

View file

@ -744,10 +744,6 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
// don't quantize vision stuff
quantize &= name.find("v.") == std::string::npos;
quantize &= name.find("mm.") == std::string::npos;
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);

View file

@ -460,24 +460,6 @@ func (m *Model) NEmbd() int {
return int(C.llama_model_n_embd(m.c))
}
func Quantize(infile, outfile string, ftype uint32) error {
cinfile := C.CString(infile)
defer C.free(unsafe.Pointer(cinfile))
coutfile := C.CString(outfile)
defer C.free(unsafe.Pointer(coutfile))
params := C.llama_model_quantize_default_params()
params.nthread = -1
params.ftype = ftype
if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
return fmt.Errorf("llama_model_quantize: %d", rc)
}
return nil
}
// vision processing
type ClipContext struct {
c *C.struct_clip_ctx

View file

@ -1,96 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Tue, 8 Apr 2025 20:39:32 -0700
Subject: [PATCH] add model quantizations
a temporary patch to add model quantization for
models not supported in llama.cpp
---
src/llama-arch.cpp | 17 +++++++++++++++++
src/llama-arch.h | 1 +
src/llama-model.cpp | 2 ++
src/llama-quant.cpp | 4 ++++
4 files changed, 24 insertions(+)
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index eb7b5325..df42d1a5 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -74,6 +74,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
{ LLM_ARCH_PLM, "plm" },
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
+ { LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -1606,6 +1607,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
+ {
+ LLM_ARCH_MISTRAL3,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ }
+ },
{
LLM_ARCH_UNKNOWN,
{
diff --git a/src/llama-arch.h b/src/llama-arch.h
index bc8a4f0b..bda9d071 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -76,6 +76,7 @@ enum llm_arch {
LLM_ARCH_CHAMELEON,
LLM_ARCH_SOLAR,
LLM_ARCH_WAVTOKENIZER_DEC,
+ LLM_ARCH_MISTRAL3,
LLM_ARCH_PLM,
LLM_ARCH_BAILINGMOE,
LLM_ARCH_UNKNOWN,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index 9d099f11..ef70486d 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -1437,6 +1437,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
+ case LLM_ARCH_MISTRAL3: break;
default: throw std::runtime_error("unsupported model architecture");
}
@@ -13751,6 +13752,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_CHAMELEON:
case LLM_ARCH_SOLAR:
case LLM_ARCH_BAILINGMOE:
+ case LLM_ARCH_MISTRAL3:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2
diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp
index 223e1f3f..8ae6dde8 100644
--- a/src/llama-quant.cpp
+++ b/src/llama-quant.cpp
@@ -744,6 +744,10 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
+ // don't quantize vision stuff
+ quantize &= name.find("v.") == std::string::npos;
+ quantize &= name.find("mm.") == std::string::npos;
+
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);

View file

@ -25,7 +25,7 @@ func TestEstimateGPULayers(t *testing.T) {
defer f.Close()
inputLayerCount := 5
tensors := []ggml.Tensor{
tensors := []*ggml.Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},

View file

@ -312,6 +312,7 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
for _, t := range meta.Tensors().Items() {
t := t
g.Go(func() error {
tts := make([]*C.struct_ggml_tensor, max(1, len(targets[t.Name])))
for i := range tts {

View file

@ -0,0 +1,83 @@
package ggml
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/src
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
// #include "ggml-quants.h"
import "C"
import (
"unsafe"
fsggml "github.com/ollama/ollama/fs/ggml"
)
// convertToF32 converts (dequantizes) the raw data to F32 so we can then quantize it
func ConvertToF32(data []byte, dtype uint32, nelements uint64) []float32 {
f32s := make([]float32, nelements)
elems := C.int64_t(nelements)
switch dtype {
case C.GGML_TYPE_F16:
C.ggml_fp16_to_fp32_row((*C.uint16_t)(unsafe.Pointer(&data[0])), (*C.float)(&f32s[0]), elems)
case C.GGML_TYPE_Q4_0:
C.dequantize_row_q4_0((*C.block_q4_0)(unsafe.Pointer(&data[0])), (*C.float)(&f32s[0]), elems)
case C.GGML_TYPE_Q4_1:
C.dequantize_row_q4_1((*C.block_q4_1)(unsafe.Pointer(&data[0])), (*C.float)(&f32s[0]), elems)
case C.GGML_TYPE_Q5_0:
C.dequantize_row_q5_0((*C.block_q5_0)(unsafe.Pointer(&data[0])), (*C.float)(&f32s[0]), elems)
case C.GGML_TYPE_Q5_1:
C.dequantize_row_q5_1((*C.block_q5_1)(unsafe.Pointer(&data[0])), (*C.float)(&f32s[0]), elems)
case C.GGML_TYPE_Q8_0:
C.dequantize_row_q8_0((*C.block_q8_0)(unsafe.Pointer(&data[0])), (*C.float)(&f32s[0]), elems)
case C.GGML_TYPE_Q2_K:
C.dequantize_row_q2_K((*C.block_q2_K)(unsafe.Pointer(&data[0])), (*C.float)(&f32s[0]), elems)
case C.GGML_TYPE_Q3_K:
C.dequantize_row_q3_K((*C.block_q3_K)(unsafe.Pointer(&data[0])), (*C.float)(&f32s[0]), elems)
case C.GGML_TYPE_Q4_K:
C.dequantize_row_q4_K((*C.block_q4_K)(unsafe.Pointer(&data[0])), (*C.float)(&f32s[0]), elems)
case C.GGML_TYPE_Q5_K:
C.dequantize_row_q5_K((*C.block_q5_K)(unsafe.Pointer(&data[0])), (*C.float)(&f32s[0]), elems)
case C.GGML_TYPE_Q6_K:
C.dequantize_row_q6_K((*C.block_q6_K)(unsafe.Pointer(&data[0])), (*C.float)(&f32s[0]), elems)
case C.GGML_TYPE_BF16:
C.ggml_bf16_to_fp32_row((*C.ggml_bf16_t)(unsafe.Pointer(&data[0])), (*C.float)(&f32s[0]), elems)
default:
panic("unsupported quantization format")
}
return f32s
}
func Quantize(newType fsggml.TensorType, f32s []float32, shape []uint64) []byte {
buf := make([]byte, len(f32s)*4) // upper bound on size
nPerRow := C.int64_t(shape[0])
nrows := C.int64_t(1)
if len(shape) > 1 {
nrows = C.int64_t(shape[1])
}
shape2 := C.int64_t(1)
if len(shape) > 2 {
shape2 = C.int64_t(shape[2])
}
nelements_matrix := nPerRow * nrows
newSize := C.size_t(0)
for i03 := C.int64_t(0); i03 < shape2; i03++ {
f32s_03 := i03 * nelements_matrix
buf_03 := C.int64_t(C.ggml_row_size(uint32(newType), nPerRow)) * i03 * nrows
newSize += C.ggml_quantize_chunk(
uint32(newType),
(*C.float)(&f32s[f32s_03]),
unsafe.Pointer((uintptr)(unsafe.Pointer(&buf[0]))+uintptr(buf_03)),
0,
nrows,
nPerRow,
nil)
}
return buf[:newSize]
}
func QuantizationVersion() uint32 {
return uint32(C.GGML_QNT_VERSION)
}

View file

@ -765,7 +765,7 @@ func getSHA256Digest(t *testing.T, r io.Reader) (string, int64) {
return fmt.Sprintf("sha256:%x", h.Sum(nil)), n
}
func createBinFile(t *testing.T, kv map[string]any, ti []ggml.Tensor) (string, string) {
func createBinFile(t *testing.T, kv map[string]any, ti []*ggml.Tensor) (string, string) {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "testbin.*.gguf")

View file

@ -15,6 +15,7 @@ import (
"path/filepath"
"slices"
"strings"
"sync/atomic"
"github.com/gin-gonic/gin"
@ -23,7 +24,6 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
@ -425,9 +425,14 @@ func createModel(r api.CreateRequest, name model.Name, baseLayers []*layerGGML,
func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.ProgressResponse)) (*layerGGML, error) {
ft := layer.GGML.KV().FileType()
fn(api.ProgressResponse{Status: fmt.Sprintf("quantizing %s model to %s", ft, quantizeType)})
want, err := ggml.ParseFileType(quantizeType)
var doneBytes atomic.Uint64
totalBytes := uint64(layer.Size) - layer.GGML.Tensors().Offset
fnWrap := func(n uint64) {
done := doneBytes.Add(n)
progress := float32(done) / float32(totalBytes)
fn(api.ProgressResponse{Status: fmt.Sprintf("quantizing %s model to %s", ft, quantizeType), Digest: "0", Total: layer.Size, Completed: int64(progress * float32(layer.Size))})
}
ftype, err := ggml.ParseFileType(quantizeType)
if err != nil {
return nil, err
}
@ -436,6 +441,11 @@ func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.Progr
if err != nil {
return nil, err
}
fp, err := os.Open(blob)
if err != nil {
return nil, err
}
defer fp.Close()
temp, err := os.CreateTemp(filepath.Dir(blob), quantizeType)
if err != nil {
@ -444,15 +454,15 @@ func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.Progr
defer temp.Close()
defer os.Remove(temp.Name())
if err := llama.Quantize(blob, temp.Name(), uint32(want)); err != nil {
if err := quantize(fp, temp, layer.GGML, ftype, fnWrap); err != nil {
return nil, err
}
temp.Seek(0, io.SeekStart)
fn(api.ProgressResponse{Status: "verifying conversion"})
newLayer, err := NewLayer(temp, layer.MediaType)
if err != nil {
return nil, err
}
if _, err := temp.Seek(0, io.SeekStart); err != nil {
return nil, err
}
@ -462,7 +472,6 @@ func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.Progr
slog.Error(fmt.Sprintf("error decoding ggml: %s\n", err))
return nil, err
}
return &layerGGML{newLayer, f}, nil
}

View file

@ -64,7 +64,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
}
defer blob.Close()
f, _, err := ggml.Decode(blob, 1024)
f, _, err := ggml.Decode(blob, -1)
if err != nil {
return nil, err
}

274
server/quantization.go Normal file
View file

@ -0,0 +1,274 @@
package server
import (
"fmt"
"io"
"log/slog"
"maps"
"os"
"strings"
"unsafe"
fsggml "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml/backend/ggml"
)
type quantizer struct {
*os.File
offset uint64
from, to *fsggml.Tensor
progressFn func(n uint64)
}
func (q quantizer) WriteTo(w io.Writer) (int64, error) {
quantize := q.from.Kind != q.to.Kind
sr := io.NewSectionReader(q, int64(q.offset), int64(q.from.Size()))
if !quantize {
n, err := io.Copy(w, sr)
q.progressFn(q.from.Size())
return n, err
}
data, err := io.ReadAll(sr)
if err != nil {
slog.Warn("file read error", "tensor", q.from.Name, "file", q.Name(), "error", err)
return 0, fmt.Errorf("unable to read tensor %s from %s: %s", q.from.Name, q.Name(), err)
}
var f32s []float32
newType := fsggml.TensorType(q.to.Kind)
if fsggml.TensorType(q.from.Kind) == fsggml.TensorTypeF32 {
f32s = unsafe.Slice((*float32)(unsafe.Pointer(&data[0])), q.from.Elements())
} else {
f32s = ggml.ConvertToF32(data, q.from.Kind, q.from.Elements())
}
data = ggml.Quantize(newType, f32s, q.from.Shape)
n, err := w.Write(data)
q.progressFn(q.from.Size())
return int64(n), err
}
type quantizeState struct {
nAttnV int // Number of attn_*v* weight tensors
nFfnDown int // Number of ffn_down tensors
iAttnV int // Running counter of number of attn_v tensors that have been processed
iFfnDown int // Running counter of number of ffn_down tensors that have been processed
hasOutput bool // used to figure out if a model shares tok_embd with the output weight
}
func useMoreBits(iLayer, nLayers int) bool {
return iLayer < (nLayers/8) || iLayer >= 7*nLayers/8 || (iLayer-nLayers/8)%3 == 2
}
func getTensorNewType(kv fsggml.KV, qs *quantizeState, newType fsggml.TensorType, name string, shape []uint64, ftype fsggml.FileType) fsggml.TensorType {
// Ported from llama_tensor_get_type, removed unsupported quantization types
nExperts := max(1, kv.Uint("expert_count", 0))
if name == "output.weight" || name == "output_norm.weight" || (!qs.hasOutput && name == "token_embd.weight") {
nx := shape[0]
qk_k := newType.BlockSize()
if nx%qk_k != 0 {
newType = fsggml.TensorTypeQ8_0
} else if newType != fsggml.TensorTypeQ8_0 {
newType = fsggml.TensorTypeQ6_K
}
} else if strings.Contains(name, "attn_v.weight") {
if ftype == fsggml.FileTypeQ2_K {
if kv.GQA() >= 4 {
newType = fsggml.TensorTypeQ4_K
} else {
newType = fsggml.TensorTypeQ3_K
}
} else if ftype == fsggml.FileTypeQ2_K_S && kv.GQA() >= 4 {
newType = fsggml.TensorTypeQ4_K
} else if ftype == fsggml.FileTypeQ3_K_M {
if qs.iAttnV < 2 {
newType = fsggml.TensorTypeQ5_K
} else {
newType = fsggml.TensorTypeQ4_K
}
} else if ftype == fsggml.FileTypeQ3_K_L {
newType = fsggml.TensorTypeQ5_K
} else if (ftype == fsggml.FileTypeQ4_K_M || ftype == fsggml.FileTypeQ5_K_M) &&
useMoreBits(qs.iAttnV, qs.nAttnV) {
newType = fsggml.TensorTypeQ6_K
} else if ftype == fsggml.FileTypeQ4_K_S && qs.iAttnV < 4 {
newType = fsggml.TensorTypeQ5_K
}
// TODO
// if (qs.model.type == LLM_TYPE_70B) {
// // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
// // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
// // nearly negligible increase in model size by quantizing this tensor with more bits:
// if (newType == GGML_TYPE_Q3_K || newType == GGML_TYPE_Q4_K) newType = GGML_TYPE_Q5_K;
// }
if nExperts == 8 {
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
newType = fsggml.TensorTypeQ8_0
}
qs.iAttnV++
} else if strings.Contains(name, "attn_k.weight") {
if nExperts == 8 {
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
newType = fsggml.TensorTypeQ8_0
}
} else if strings.Contains(name, "ffn_down") {
iLayer := qs.iFfnDown
n_layer := qs.nFfnDown
if ftype == fsggml.FileTypeQ2_K {
newType = fsggml.TensorTypeQ3_K
} else if ftype == fsggml.FileTypeQ2_K_S {
if iLayer < n_layer/8 {
newType = fsggml.TensorTypeQ4_K
}
} else if ftype == fsggml.FileTypeQ3_K_M {
if iLayer < n_layer/16 {
newType = fsggml.TensorTypeQ5_K
} else if useMoreBits(iLayer, n_layer) {
newType = fsggml.TensorTypeQ4_K
} else {
newType = fsggml.TensorTypeQ3_K
}
} else if ftype == fsggml.FileTypeQ3_K_L {
newType = fsggml.TensorTypeQ5_K
} else if ftype == fsggml.FileTypeQ4_K_M {
if useMoreBits(iLayer, n_layer) {
newType = fsggml.TensorTypeQ6_K
}
} else if ftype == fsggml.FileTypeQ5_K_M && useMoreBits(iLayer, n_layer) {
newType = fsggml.TensorTypeQ6_K
} else if ftype == fsggml.FileTypeQ4_K_S && iLayer < n_layer/8 {
newType = fsggml.TensorTypeQ5_K
}
qs.iFfnDown++
} else if strings.Contains(name, "attn_output.weight") {
if nExperts == 8 {
if ftype == fsggml.FileTypeQ2_K || ftype == fsggml.FileTypeQ3_K_S || ftype == fsggml.FileTypeQ3_K_M ||
ftype == fsggml.FileTypeQ4_K_S || ftype == fsggml.FileTypeQ4_K_M {
newType = fsggml.TensorTypeQ5_K
}
} else {
if ftype == fsggml.FileTypeQ2_K {
newType = fsggml.TensorTypeQ3_K
} else if ftype == fsggml.FileTypeQ3_K_M {
newType = fsggml.TensorTypeQ4_K
} else if ftype == fsggml.FileTypeQ3_K_L {
newType = fsggml.TensorTypeQ5_K
}
}
} else if strings.Contains(name, "attn_qkv.weight") {
if ftype == fsggml.FileTypeQ3_K_M || ftype == fsggml.FileTypeQ3_K_L {
newType = fsggml.TensorTypeQ4_K
} else if ftype == fsggml.FileTypeQ4_K_M {
newType = fsggml.TensorTypeQ5_K
} else if ftype == fsggml.FileTypeQ5_K_M {
newType = fsggml.TensorTypeQ6_K
}
}
if newType.IsQuantized() {
nx := shape[0]
ny := uint64(1)
if len(shape) > 1 {
ny = shape[1]
}
qk_k := newType.BlockSize()
if nx%qk_k != 0 {
slog.Warn(fmt.Sprintf("tensor cols %d x %d are not divisible by %d, required for %s. Falling back to quantization %s", nx, ny, qk_k, newType.String(), fsggml.TensorTypeF16.String()))
newType = fsggml.TensorTypeF16
}
}
return newType
}
func quantize(in, out *os.File, orig *fsggml.GGML, newFileType fsggml.FileType, progressFn func(n uint64)) error {
kv := maps.Clone(orig.KV())
kv["general.file_type"] = newFileType
// kv["general.quantization_version"] = ggml.QuantizationVersion()
qs := &quantizeState{}
// Build up the quantize state so newType can adjust types
layerCount := 0
for k, l := range orig.Tensors().GroupLayers() {
if strings.HasPrefix(k, "blk.") {
layerCount++
}
for _, tensor := range l {
if strings.Contains(tensor.Name, "attn_v.weight") ||
strings.Contains(tensor.Name, "attn_qkv.weight") ||
strings.Contains(tensor.Name, "attn_kv_b.weight") {
qs.nAttnV++
} else if tensor.Name == "output.weight" {
qs.hasOutput = true
}
}
}
qs.nFfnDown = layerCount
origTensors := orig.Tensors().Items()
outputTensors := make([]*fsggml.Tensor, len(origTensors))
for i, tensor := range origTensors {
tensor := tensor
newType := newType(tensor, kv, qs, newFileType)
newTensor := &fsggml.Tensor{
Name: tensor.Name,
Shape: tensor.Shape,
Kind: uint32(newType),
}
outputTensors[i] = newTensor
outputTensors[i].WriterTo = quantizer{
File: in,
offset: orig.Tensors().Offset + tensor.Offset,
from: tensor,
to: newTensor,
progressFn: progressFn,
}
}
return fsggml.WriteGGUF(out, kv, outputTensors)
}
func newType(t *fsggml.Tensor, kv fsggml.KV, qs *quantizeState, ftype fsggml.FileType) fsggml.TensorType {
defaultType := ftype.ToTensorType()
name := t.Name
quantize := strings.HasSuffix(name, "weight")
// don't quantize vision stuff
quantize = quantize && (!strings.Contains(name, "v.") || strings.Contains(name, "_v."))
quantize = quantize && !strings.Contains(name, "mm.")
// quantize only 2D and 3D tensors (experts)
quantize = quantize && (len(t.Shape) >= 2)
// do not quantize norm tensors
quantize = quantize && !strings.Contains(name, "_norm.weight")
// do not quantize expert gating tensors
quantize = quantize && !strings.Contains(name, "ffn_gate_inp.weight")
// do not quantize positional embeddings and token types (BERT)
quantize = quantize && (name != "position_embd.weight")
quantize = quantize && (name != "token_types.weight")
// do not quantize Mamba's small yet 2D weights
// NOTE: can't use LLM_TN here because the layer number is not known
quantize = quantize && !strings.Contains(name, "ssm_conv1d.weight")
// do not quantize RWKV's time_mix_first tensors
quantize = quantize && !strings.Contains(name, "time_mix_first.weight")
quantize = quantize && !strings.Contains(name, "time_mix_w1.weight")
quantize = quantize && !strings.Contains(name, "time_mix_w2.weight")
quantize = quantize && !strings.Contains(name, "time_mix_decay_w1.weight")
quantize = quantize && !strings.Contains(name, "time_mix_decay_w2.weight")
quantize = quantize && !strings.Contains(name, "time_mix_lerp_fused.weight")
// do not quantize relative position bias (T5)
quantize = quantize && !strings.Contains(name, "attn_rel_b.weight")
newType := fsggml.TensorType(t.Kind)
if quantize {
// get more optimal quantization type based on the tensor shape, layer, etc.
newType = getTensorNewType(kv, qs, defaultType, t.Name, t.Shape, ftype)
if newType != defaultType {
slog.Debug("tensor quantization adjusted for better quality", "name", t.Name, "requested", defaultType, "quantization", newType)
}
}
return newType
}

882
server/quantization_test.go Normal file
View file

@ -0,0 +1,882 @@
package server
import (
"bytes"
"fmt"
"math"
"os"
"strings"
"testing"
fsggml "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml/backend/ggml"
)
func TestGetTensorNewType(t *testing.T) {
cases := []struct {
name string
kv map[string]any
qs quantizeState
newType fsggml.TensorType
tensor_name string
shape []uint64
ftype fsggml.FileType
expected fsggml.TensorType
expectedPanic string
}{
{
name: "output_unsupported",
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "output.weight",
shape: []uint64{100, 100},
ftype: fsggml.FileTypeF32,
expected: fsggml.TensorTypeF16,
},
{
name: "output_Q8",
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "output.weight",
shape: []uint64{1024, 1024},
ftype: fsggml.FileTypeF32,
expected: fsggml.TensorTypeQ6_K,
},
{
name: "attn_v.weight_q4_k",
kv: map[string]any{
"general.architecture": "foo",
"foo.attention.head_count": uint32(4),
"foo.attention.head_count_kv": uint32(1),
},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_v.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ2_K,
expected: fsggml.TensorTypeQ4_K,
},
{
name: "attn_v.weight_q3_k",
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_v.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ2_K,
expected: fsggml.TensorTypeQ3_K,
},
{
name: "attn_v.weight_q2_k_s_q4_k",
kv: map[string]any{
"general.architecture": "foo",
"foo.attention.head_count": uint32(4),
"foo.attention.head_count_kv": uint32(1),
},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_v.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ2_K_S,
expected: fsggml.TensorTypeQ4_K,
},
{
name: "attn_v.weight_q3_k_m",
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_v.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ3_K_M,
expected: fsggml.TensorTypeQ5_K,
},
{
name: "attn_v.weight_q3_k_m_i",
qs: quantizeState{
iAttnV: 2,
},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_v.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ3_K_M,
expected: fsggml.TensorTypeQ4_K,
},
{
name: "attn_v.weight_q3_k_l",
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_v.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ3_K_L,
expected: fsggml.TensorTypeQ5_K,
},
{
name: "attn_v.weight_q4_k_m",
qs: quantizeState{
iAttnV: 2,
nAttnV: 3 * 8,
},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_v.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ4_K_M,
expected: fsggml.TensorTypeQ6_K,
},
{
name: "attn_v.weight_q4_k_s",
qs: quantizeState{},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_v.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ4_K_S,
expected: fsggml.TensorTypeQ5_K,
},
{
name: "attn_v.weight_8_expert",
qs: quantizeState{},
kv: map[string]any{
"general.architecture": "foo",
"foo.expert_count": uint32(8),
},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_v.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeF32,
expected: fsggml.TensorTypeQ8_0,
},
{
name: "attn_k.weight_8_expert",
qs: quantizeState{},
kv: map[string]any{
"general.architecture": "foo",
"foo.expert_count": uint32(8),
},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_k.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeF32,
expected: fsggml.TensorTypeQ8_0,
},
{
name: "ffn_down_q2_k",
qs: quantizeState{},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "ffn_down",
shape: []uint64{256},
ftype: fsggml.FileTypeQ2_K,
expected: fsggml.TensorTypeQ3_K,
},
{
name: "ffn_down_q2_k_s",
qs: quantizeState{},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "ffn_down",
shape: []uint64{256},
ftype: fsggml.FileTypeQ2_K_S,
expected: fsggml.TensorTypeQ4_0,
},
{
name: "ffn_down_q2_k_s_layers",
qs: quantizeState{
iFfnDown: 2,
nFfnDown: 3 * 8,
},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "ffn_down",
shape: []uint64{256},
ftype: fsggml.FileTypeQ2_K_S,
expected: fsggml.TensorTypeQ4_K,
},
{
name: "ffn_down_q3_k_m_base",
qs: quantizeState{
iFfnDown: 1,
nFfnDown: 8,
},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "ffn_down",
shape: []uint64{256},
ftype: fsggml.FileTypeQ3_K_M,
expected: fsggml.TensorTypeQ3_K,
},
{
name: "ffn_down_q3_k_m_16",
qs: quantizeState{
iFfnDown: 2,
nFfnDown: 3 * 16,
},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "ffn_down",
shape: []uint64{256},
ftype: fsggml.FileTypeQ3_K_M,
expected: fsggml.TensorTypeQ5_K,
},
{
name: "ffn_down_q3_k_m_8",
qs: quantizeState{
iFfnDown: 2,
nFfnDown: 3 * 8,
},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "ffn_down",
shape: []uint64{256},
ftype: fsggml.FileTypeQ3_K_M,
expected: fsggml.TensorTypeQ4_K,
},
{
name: "ffn_down_q3_k_l",
qs: quantizeState{},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "ffn_down",
shape: []uint64{256},
ftype: fsggml.FileTypeQ3_K_L,
expected: fsggml.TensorTypeQ5_K,
},
{
name: "ffn_down_q4_k_m",
qs: quantizeState{
iFfnDown: 1,
nFfnDown: 8,
},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "ffn_down",
shape: []uint64{256},
ftype: fsggml.FileTypeQ4_K_M,
expected: fsggml.TensorTypeQ4_0,
},
{
name: "ffn_down_q4_k_m_6",
qs: quantizeState{
iFfnDown: 2,
nFfnDown: 3 * 8,
},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "ffn_down",
shape: []uint64{256},
ftype: fsggml.FileTypeQ4_K_M,
expected: fsggml.TensorTypeQ6_K,
},
{
name: "ffn_down_q5_k_m",
qs: quantizeState{
iFfnDown: 2,
nFfnDown: 3 * 8,
},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "ffn_down",
shape: []uint64{256},
ftype: fsggml.FileTypeQ5_K_M,
expected: fsggml.TensorTypeQ6_K,
},
{
name: "ffn_down_q4_k_s",
qs: quantizeState{
iFfnDown: 2,
nFfnDown: 3 * 8,
},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "ffn_down",
shape: []uint64{256},
ftype: fsggml.FileTypeQ4_K_S,
expected: fsggml.TensorTypeQ5_K,
},
{
name: "attn_output.weight_8_expert",
qs: quantizeState{},
kv: map[string]any{
"general.architecture": "foo",
"foo.expert_count": uint32(8),
},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_output.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ2_K,
expected: fsggml.TensorTypeQ5_K,
},
{
name: "attn_output.weight_q2",
qs: quantizeState{},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_output.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ2_K,
expected: fsggml.TensorTypeQ3_K,
},
{
name: "attn_output.weight_q3_k_m",
qs: quantizeState{},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_output.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ3_K_M,
expected: fsggml.TensorTypeQ4_K,
},
{
name: "attn_output.weight_q3_k_l",
qs: quantizeState{},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_output.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ3_K_L,
expected: fsggml.TensorTypeQ5_K,
},
{
name: "attn_qkv.weight_q3_k_m",
qs: quantizeState{},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_qkv.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ3_K_M,
expected: fsggml.TensorTypeQ4_K,
},
{
name: "attn_qkv.weight_q4_k_m",
qs: quantizeState{},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_qkv.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ4_K_M,
expected: fsggml.TensorTypeQ5_K,
},
{
name: "attn_qkv.weight_q5_k_m",
qs: quantizeState{},
kv: map[string]any{},
newType: fsggml.TensorTypeQ4_0,
tensor_name: "blk.0.attn_qkv.weight",
shape: []uint64{256},
ftype: fsggml.FileTypeQ5_K_M,
expected: fsggml.TensorTypeQ6_K,
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
if tt.expectedPanic != "" {
defer func() {
e := recover()
if !strings.Contains(fmt.Sprintf("%v", e), tt.expectedPanic) {
t.Fatalf("incorrect panic\ngot: %v\nexpected: %s", e, tt.expectedPanic)
}
}()
} else {
defer func() {
e := recover()
if e != nil {
t.Fatalf("hit unexpected panic %v", e)
}
}()
}
ret := getTensorNewType(tt.kv, &tt.qs, tt.newType, tt.tensor_name, tt.shape, tt.ftype)
if ret != tt.expected {
t.Fatalf("incorrect type returned\ngot: %d\nexpected: %d", ret, tt.expected)
}
})
}
}
func TestQuantizeModel(t *testing.T) {
cases := []struct {
name string
kv map[string]any
tensors []*fsggml.Tensor
newType string
expectedTensorTypes map[string]fsggml.TensorType
}{
{
name: "f16_q4_k",
kv: map[string]any{
"general.architecture": "foo",
},
tensors: []*fsggml.Tensor{
{
Name: "blk.0.attn.weight", Kind: uint32(fsggml.TensorTypeF16),
Offset: uint64(0), Shape: []uint64{512, 2},
WriterTo: bytes.NewReader(
append(append(append(quantBytes[fsggml.TensorTypeF16], quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...),
),
},
{
Name: "output.weight", Kind: uint32(fsggml.TensorTypeF16),
Offset: uint64(0), Shape: []uint64{256, 4},
WriterTo: bytes.NewReader(
append(append(append(quantBytes[fsggml.TensorTypeF16], quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...),
),
},
},
newType: "Q4_K",
expectedTensorTypes: map[string]fsggml.TensorType{
"blk.0.attn.weight": fsggml.TensorTypeQ4_K,
"output.weight": fsggml.TensorTypeQ6_K,
},
},
{
name: "f32_q4_k",
kv: map[string]any{
"general.architecture": "foo",
},
tensors: []*fsggml.Tensor{
{
Name: "blk.0.attn_v.weight", Kind: uint32(fsggml.TensorTypeF32),
Offset: uint64(0), Shape: []uint64{512, 2},
WriterTo: bytes.NewReader(
append(append(append(quantBytes[fsggml.TensorTypeF32], quantBytes[fsggml.TensorTypeF32]...), quantBytes[fsggml.TensorTypeF32]...), quantBytes[fsggml.TensorTypeF32]...),
),
},
{
Name: "output.weight", Kind: uint32(fsggml.TensorTypeF32),
Offset: uint64(0), Shape: []uint64{512},
WriterTo: bytes.NewReader(append(quantBytes[fsggml.TensorTypeF32], quantBytes[fsggml.TensorTypeF32]...)),
},
},
newType: "Q4_K",
expectedTensorTypes: map[string]fsggml.TensorType{
"blk.0.attn_v.weight": fsggml.TensorTypeQ6_K,
"output.weight": fsggml.TensorTypeF32,
},
},
{
name: "f16_q8_0",
kv: map[string]any{
"general.architecture": "foo",
},
tensors: []*fsggml.Tensor{
{
Name: "blk.0.attn.weight", Kind: uint32(fsggml.TensorTypeF16),
Offset: uint64(0), Shape: []uint64{32, 16, 2},
WriterTo: bytes.NewReader(
append(append(append(quantBytes[fsggml.TensorTypeF16], quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...),
),
},
{
Name: "output.weight", Kind: uint32(fsggml.TensorTypeF16),
Offset: uint64(0), Shape: []uint64{256, 4},
WriterTo: bytes.NewReader(
append(append(append(quantBytes[fsggml.TensorTypeF16], quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...),
),
},
},
newType: "Q8_0",
expectedTensorTypes: map[string]fsggml.TensorType{
"blk.0.attn.weight": fsggml.TensorTypeQ8_0,
"output.weight": fsggml.TensorTypeQ8_0,
},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
f, err := os.CreateTemp(t.TempDir(), tt.name)
if err != nil {
t.Fatal(err.Error())
}
defer f.Close()
err = fsggml.WriteGGUF(f, tt.kv, tt.tensors)
if err != nil {
t.Fatalf("failed to create initial model: %s", err)
}
fp, err := os.Open(f.Name())
if err != nil {
t.Fatal(err.Error())
}
defer fp.Close()
meta, _, err := fsggml.Decode(fp, -1)
if err != nil {
t.Fatal(err.Error())
}
progressCalled := false
progress := func(n uint64) {
// fmt.Fprintf(os.Stderr, "progress: %f\n", p)
progressCalled = true
}
tmp, err := os.CreateTemp(t.TempDir(), tt.name+".out")
if err != nil {
t.Fatal(err.Error())
}
defer tmp.Close()
ftype, err := fsggml.ParseFileType(tt.newType)
if err != nil {
t.Fatal(err.Error())
}
err = quantize(fp, tmp, meta, ftype, progress)
if err != nil {
t.Fatalf("error during quantize: %s", err)
}
if !progressCalled {
t.Fatalf("progress was not reported")
}
// Now attempt to load it back and make sure types match expected
fpNew, err := os.Open(tmp.Name())
if err != nil {
t.Fatalf("failed to load the quantized model %s: %s", tmp.Name(), err)
}
defer fpNew.Close()
newMeta, _, err := fsggml.Decode(fpNew, -1)
if err != nil {
t.Fatalf("failed to load the quantized model %s: %s", tmp.Name(), err)
}
tensors := newMeta.Tensors()
for _, l := range tensors.GroupLayers() {
for _, tensor := range l {
if fsggml.TensorType(tensor.Kind) != tt.expectedTensorTypes[tensor.Name] {
t.Fatalf("incorrect output type for %s\ngot:%s\nexpected:%s", tensor.Name, fsggml.TensorType(tensor.Kind), tt.expectedTensorTypes[tensor.Name])
}
}
}
})
}
}
func TestConvertToF32(t *testing.T) {
expected := make([]float32, 256)
for i := range expected {
expected[i] = float32(i)
}
for dtype, data := range quantBytes {
// Skip the no-op
if dtype == fsggml.TensorTypeF32 {
continue
}
t.Run(dtype.String(), func(t *testing.T) {
fp32 := ggml.ConvertToF32(data, uint32(dtype), 256)
similarity := cosineSimilarity(expected, fp32)
if similarity < 0.999 {
t.Fatalf("Results not similar enough: %s %f", dtype.String(), similarity)
}
})
}
}
func dotProduct[V float32 | float64](v1, v2 []V) V {
var result V = 0
for i := range v1 {
result += v1[i] * v2[i]
}
return result
}
func magnitude[V float32 | float64](v []V) V {
var result V = 0
for _, val := range v {
result += val * val
}
return V(math.Sqrt(float64(result)))
}
func cosineSimilarity[V float32 | float64](v1, v2 []V) V {
return dotProduct(v1, v2) / (magnitude(v1) * magnitude(v2))
}
// Precomputed quantized data - arange 256
// # For gguf-py supported types
// import gguf
// import numpy as np
// print(repr(gguf.quantize(np.arange(256, dtype=np.float16), gguf.GGMLQuantizationType.Q4_0)))
//
// For types not supported by gguf-py converted via ggml_fp32_to_fp16_row and quantize_XXX
//
// data := make([]byte, 256*2)
// fp32 := make([]float32, 256)
// for i := range 256 {
// fp32[i] = float32(i)
// }
// l := C.quantize_q6_K((*C.float)(&fp32[0]), unsafe.Pointer(&data[0]), 1, 256, nil)
// for i := range data[:int(l)] {
// fmt.Printf("%d, ", data[i])
// }
var (
quantBytes = map[fsggml.TensorType][]byte{
fsggml.TensorTypeQ4_0: {
192, 195, 72, 72, 55, 55, 55, 55, 38, 38, 38, 38, 21,
21, 21, 21, 4, 4, 224, 199, 36, 36, 36, 36, 19, 19,
19, 19, 19, 19, 19, 19, 2, 2, 2, 2, 240, 201, 19,
19, 18, 18, 18, 18, 18, 18, 18, 18, 2, 2, 2, 2,
1, 1, 240, 203, 18, 18, 18, 18, 18, 18, 18, 18, 1,
1, 1, 1, 1, 1, 1, 1, 248, 204, 18, 18, 17, 17,
17, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 248,
205, 17, 17, 17, 17, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 248, 206, 17, 17, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 248, 207, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1,
},
fsggml.TensorTypeQ4_1: {
34, 64, 0, 0, 128, 128, 145, 145, 162, 162, 179, 179, 196,
196, 213, 213, 230, 230, 247, 247, 34, 64, 0, 80, 128, 128,
145, 145, 162, 162, 179, 179, 196, 196, 213, 213, 230, 230, 247,
247, 34, 64, 0, 84, 128, 128, 145, 145, 162, 162, 179, 179,
196, 196, 213, 213, 230, 230, 247, 247, 34, 64, 0, 86, 128,
128, 145, 145, 162, 162, 179, 179, 196, 196, 213, 213, 230, 230,
247, 247, 34, 64, 0, 88, 128, 128, 145, 145, 162, 162, 179,
179, 196, 196, 213, 213, 230, 230, 247, 247, 34, 64, 0, 89,
128, 128, 145, 145, 162, 162, 179, 179, 196, 196, 213, 213, 230,
230, 247, 247, 34, 64, 0, 90, 128, 128, 145, 145, 162, 162,
179, 179, 196, 196, 213, 213, 230, 230, 247, 247, 34, 64, 0,
91, 128, 128, 145, 145, 162, 162, 179, 179, 196, 196, 213, 213,
230, 230, 247, 247,
},
fsggml.TensorTypeQ5_0: {
192, 191, 1, 0, 0, 0, 128, 127, 127, 110, 110, 93, 93,
76, 76, 59, 59, 42, 42, 25, 25, 8, 224, 195, 0, 0,
0, 0, 72, 72, 55, 55, 55, 55, 38, 38, 38, 38, 21,
21, 21, 21, 4, 4, 240, 197, 0, 0, 0, 0, 53, 37,
37, 37, 37, 36, 36, 20, 20, 20, 20, 19, 19, 3, 3,
3, 240, 199, 0, 0, 0, 0, 36, 36, 36, 36, 19, 19,
19, 19, 19, 19, 19, 19, 2, 2, 2, 2, 248, 200, 0,
0, 0, 0, 35, 19, 19, 19, 19, 19, 19, 18, 18, 18,
18, 2, 2, 2, 2, 2, 248, 201, 0, 0, 0, 0, 19,
19, 18, 18, 18, 18, 18, 18, 18, 18, 2, 2, 2, 2,
1, 1, 248, 202, 0, 0, 0, 0, 18, 18, 18, 18, 18,
18, 18, 18, 18, 2, 2, 1, 1, 1, 1, 1, 248, 203,
0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 1,
1, 1, 1, 1, 1, 1, 1,
},
fsggml.TensorTypeQ5_1: {
0, 60, 0, 0, 0, 0, 255, 255, 0, 17, 34, 51, 68,
85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, 0, 60,
0, 80, 0, 0, 255, 255, 0, 17, 34, 51, 68, 85, 102,
119, 136, 153, 170, 187, 204, 221, 238, 255, 0, 60, 0, 84,
0, 0, 255, 255, 0, 17, 34, 51, 68, 85, 102, 119, 136,
153, 170, 187, 204, 221, 238, 255, 0, 60, 0, 86, 0, 0,
255, 255, 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170,
187, 204, 221, 238, 255, 0, 60, 0, 88, 0, 0, 255, 255,
0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204,
221, 238, 255, 0, 60, 0, 89, 0, 0, 255, 255, 0, 17,
34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238,
255, 0, 60, 0, 90, 0, 0, 255, 255, 0, 17, 34, 51,
68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, 0,
60, 0, 91, 0, 0, 255, 255, 0, 17, 34, 51, 68, 85,
102, 119, 136, 153, 170, 187, 204, 221, 238, 255,
},
fsggml.TensorTypeQ8_0: {
208, 51, 0, 4, 8, 12, 16, 20, 25, 29, 33, 37, 41,
45, 49, 53, 57, 61, 66, 70, 74, 78, 82, 86, 90, 94,
98, 102, 107, 111, 115, 119, 123, 127, 240, 55, 65, 67, 69,
71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95,
97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121,
123, 125, 127, 252, 57, 86, 87, 88, 90, 91, 92, 94, 95,
96, 98, 99, 100, 102, 103, 104, 106, 107, 108, 110, 111, 112,
114, 115, 116, 118, 119, 120, 122, 123, 124, 126, 127, 0, 60,
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127, 2, 61, 102, 103, 104, 105, 105,
106, 107, 108, 109, 109, 110, 111, 112, 113, 113, 114, 115, 116,
117, 117, 118, 119, 120, 121, 121, 122, 123, 124, 125, 125, 126,
127, 4, 62, 106, 107, 108, 108, 109, 110, 110, 111, 112, 112,
113, 114, 114, 115, 116, 116, 117, 118, 118, 119, 120, 120, 121,
122, 122, 123, 124, 124, 125, 126, 126, 127, 6, 63, 109, 110,
110, 111, 112, 112, 113, 113, 114, 114, 115, 116, 116, 117, 117,
118, 118, 119, 120, 120, 121, 121, 122, 122, 123, 124, 124, 125,
125, 126, 126, 127, 4, 64, 112, 112, 113, 113, 114, 114, 115,
115, 116, 116, 117, 117, 118, 118, 119, 119, 120, 120, 121, 121,
122, 122, 123, 123, 124, 124, 125, 125, 126, 126, 127, 127,
},
fsggml.TensorTypeBF16: {
0, 0, 128, 63, 0, 64, 64, 64, 128, 64, 160, 64, 192,
64, 224, 64, 0, 65, 16, 65, 32, 65, 48, 65, 64, 65,
80, 65, 96, 65, 112, 65, 128, 65, 136, 65, 144, 65, 152,
65, 160, 65, 168, 65, 176, 65, 184, 65, 192, 65, 200, 65,
208, 65, 216, 65, 224, 65, 232, 65, 240, 65, 248, 65, 0,
66, 4, 66, 8, 66, 12, 66, 16, 66, 20, 66, 24, 66,
28, 66, 32, 66, 36, 66, 40, 66, 44, 66, 48, 66, 52,
66, 56, 66, 60, 66, 64, 66, 68, 66, 72, 66, 76, 66,
80, 66, 84, 66, 88, 66, 92, 66, 96, 66, 100, 66, 104,
66, 108, 66, 112, 66, 116, 66, 120, 66, 124, 66, 128, 66,
130, 66, 132, 66, 134, 66, 136, 66, 138, 66, 140, 66, 142,
66, 144, 66, 146, 66, 148, 66, 150, 66, 152, 66, 154, 66,
156, 66, 158, 66, 160, 66, 162, 66, 164, 66, 166, 66, 168,
66, 170, 66, 172, 66, 174, 66, 176, 66, 178, 66, 180, 66,
182, 66, 184, 66, 186, 66, 188, 66, 190, 66, 192, 66, 194,
66, 196, 66, 198, 66, 200, 66, 202, 66, 204, 66, 206, 66,
208, 66, 210, 66, 212, 66, 214, 66, 216, 66, 218, 66, 220,
66, 222, 66, 224, 66, 226, 66, 228, 66, 230, 66, 232, 66,
234, 66, 236, 66, 238, 66, 240, 66, 242, 66, 244, 66, 246,
66, 248, 66, 250, 66, 252, 66, 254, 66, 0, 67, 1, 67,
2, 67, 3, 67, 4, 67, 5, 67, 6, 67, 7, 67, 8,
67, 9, 67, 10, 67, 11, 67, 12, 67, 13, 67, 14, 67,
15, 67, 16, 67, 17, 67, 18, 67, 19, 67, 20, 67, 21,
67, 22, 67, 23, 67, 24, 67, 25, 67, 26, 67, 27, 67,
28, 67, 29, 67, 30, 67, 31, 67, 32, 67, 33, 67, 34,
67, 35, 67, 36, 67, 37, 67, 38, 67, 39, 67, 40, 67,
41, 67, 42, 67, 43, 67, 44, 67, 45, 67, 46, 67, 47,
67, 48, 67, 49, 67, 50, 67, 51, 67, 52, 67, 53, 67,
54, 67, 55, 67, 56, 67, 57, 67, 58, 67, 59, 67, 60,
67, 61, 67, 62, 67, 63, 67, 64, 67, 65, 67, 66, 67,
67, 67, 68, 67, 69, 67, 70, 67, 71, 67, 72, 67, 73,
67, 74, 67, 75, 67, 76, 67, 77, 67, 78, 67, 79, 67,
80, 67, 81, 67, 82, 67, 83, 67, 84, 67, 85, 67, 86,
67, 87, 67, 88, 67, 89, 67, 90, 67, 91, 67, 92, 67,
93, 67, 94, 67, 95, 67, 96, 67, 97, 67, 98, 67, 99,
67, 100, 67, 101, 67, 102, 67, 103, 67, 104, 67, 105, 67,
106, 67, 107, 67, 108, 67, 109, 67, 110, 67, 111, 67, 112,
67, 113, 67, 114, 67, 115, 67, 116, 67, 117, 67, 118, 67,
119, 67, 120, 67, 121, 67, 122, 67, 123, 67, 124, 67, 125,
67, 126, 67, 127, 67,
},
fsggml.TensorTypeF16: {
0, 0, 0, 60, 0, 64, 0, 66, 0, 68, 0, 69, 0, 70, 0, 71, 0,
72, 128, 72, 0, 73, 128, 73, 0, 74, 128, 74, 0, 75, 128, 75,
0, 76, 64, 76, 128, 76, 192, 76, 0, 77, 64, 77, 128, 77, 192,
77, 0, 78, 64, 78, 128, 78, 192, 78, 0, 79, 64, 79, 128, 79,
192, 79, 0, 80, 32, 80, 64, 80, 96, 80, 128, 80, 160, 80,
192, 80, 224, 80, 0, 81, 32, 81, 64, 81, 96, 81, 128, 81,
160, 81, 192, 81, 224, 81, 0, 82, 32, 82, 64, 82, 96, 82,
128, 82, 160, 82, 192, 82, 224, 82, 0, 83, 32, 83, 64, 83,
96, 83, 128, 83, 160, 83, 192, 83, 224, 83, 0, 84, 16, 84,
32, 84, 48, 84, 64, 84, 80, 84, 96, 84, 112, 84, 128, 84,
144, 84, 160, 84, 176, 84, 192, 84, 208, 84, 224, 84, 240,
84, 0, 85, 16, 85, 32, 85, 48, 85, 64, 85, 80, 85, 96, 85,
112, 85, 128, 85, 144, 85, 160, 85, 176, 85, 192, 85, 208,
85, 224, 85, 240, 85, 0, 86, 16, 86, 32, 86, 48, 86, 64,
86, 80, 86, 96, 86, 112, 86, 128, 86, 144, 86, 160, 86,
176, 86, 192, 86, 208, 86, 224, 86, 240, 86, 0, 87, 16,
87, 32, 87, 48, 87, 64, 87, 80, 87, 96, 87, 112, 87, 128,
87, 144, 87, 160, 87, 176, 87, 192, 87, 208, 87, 224, 87,
240, 87, 0, 88, 8, 88, 16, 88, 24, 88, 32, 88, 40, 88,
48, 88, 56, 88, 64, 88, 72, 88, 80, 88, 88, 88, 96, 88,
104, 88, 112, 88, 120, 88, 128, 88, 136, 88, 144, 88, 152,
88, 160, 88, 168, 88, 176, 88, 184, 88, 192, 88, 200, 88,
208, 88, 216, 88, 224, 88, 232, 88, 240, 88, 248, 88, 0,
89, 8, 89, 16, 89, 24, 89, 32, 89, 40, 89, 48, 89, 56, 89,
64, 89, 72, 89, 80, 89, 88, 89, 96, 89, 104, 89, 112, 89,
120, 89, 128, 89, 136, 89, 144, 89, 152, 89, 160, 89, 168,
89, 176, 89, 184, 89, 192, 89, 200, 89, 208, 89, 216, 89,
224, 89, 232, 89, 240, 89, 248, 89, 0, 90, 8, 90, 16, 90,
24, 90, 32, 90, 40, 90, 48, 90, 56, 90, 64, 90, 72, 90, 80,
90, 88, 90, 96, 90, 104, 90, 112, 90, 120, 90, 128, 90,
136, 90, 144, 90, 152, 90, 160, 90, 168, 90, 176, 90, 184,
90, 192, 90, 200, 90, 208, 90, 216, 90, 224, 90, 232, 90,
240, 90, 248, 90, 0, 91, 8, 91, 16, 91, 24, 91, 32, 91, 40,
91, 48, 91, 56, 91, 64, 91, 72, 91, 80, 91, 88, 91, 96, 91,
104, 91, 112, 91, 120, 91, 128, 91, 136, 91, 144, 91, 152,
91, 160, 91, 168, 91, 176, 91, 184, 91, 192, 91, 200, 91,
208, 91, 216, 91, 224, 91, 232, 91, 240, 91, 248, 91,
},
fsggml.TensorTypeF32: {
0, 0, 0, 0, 0, 0, 128, 63, 0, 0, 0, 64, 0, 0, 64, 64, 0, 0, 128,
64, 0, 0, 160, 64, 0, 0, 192, 64, 0, 0, 224, 64, 0, 0, 0, 65, 0,
0, 16, 65, 0, 0, 32, 65, 0, 0, 48, 65, 0, 0, 64, 65, 0, 0, 80, 65,
0, 0, 96, 65, 0, 0, 112, 65, 0, 0, 128, 65, 0, 0, 136, 65, 0, 0,
144, 65, 0, 0, 152, 65, 0, 0, 160, 65, 0, 0, 168, 65, 0, 0, 176,
65, 0, 0, 184, 65, 0, 0, 192, 65, 0, 0, 200, 65, 0, 0, 208, 65, 0,
0, 216, 65, 0, 0, 224, 65, 0, 0, 232, 65, 0, 0, 240, 65, 0, 0, 248,
65, 0, 0, 0, 66, 0, 0, 4, 66, 0, 0, 8, 66, 0, 0, 12, 66, 0, 0, 16,
66, 0, 0, 20, 66, 0, 0, 24, 66, 0, 0, 28, 66, 0, 0, 32, 66, 0, 0,
36, 66, 0, 0, 40, 66, 0, 0, 44, 66, 0, 0, 48, 66, 0, 0, 52, 66, 0,
0, 56, 66, 0, 0, 60, 66, 0, 0, 64, 66, 0, 0, 68, 66, 0, 0, 72, 66,
0, 0, 76, 66, 0, 0, 80, 66, 0, 0, 84, 66, 0, 0, 88, 66, 0, 0, 92, 66,
0, 0, 96, 66, 0, 0, 100, 66, 0, 0, 104, 66, 0, 0, 108, 66, 0, 0, 112,
66, 0, 0, 116, 66, 0, 0, 120, 66, 0, 0, 124, 66, 0, 0, 128, 66, 0, 0,
130, 66, 0, 0, 132, 66, 0, 0, 134, 66, 0, 0, 136, 66, 0, 0, 138, 66,
0, 0, 140, 66, 0, 0, 142, 66, 0, 0, 144, 66, 0, 0, 146, 66, 0, 0, 148,
66, 0, 0, 150, 66, 0, 0, 152, 66, 0, 0, 154, 66, 0, 0, 156, 66, 0, 0,
158, 66, 0, 0, 160, 66, 0, 0, 162, 66, 0, 0, 164, 66, 0, 0, 166, 66,
0, 0, 168, 66, 0, 0, 170, 66, 0, 0, 172, 66, 0, 0, 174, 66, 0, 0, 176,
66, 0, 0, 178, 66, 0, 0, 180, 66, 0, 0, 182, 66, 0, 0, 184, 66, 0, 0,
186, 66, 0, 0, 188, 66, 0, 0, 190, 66, 0, 0, 192, 66, 0, 0, 194, 66, 0,
0, 196, 66, 0, 0, 198, 66, 0, 0, 200, 66, 0, 0, 202, 66, 0, 0, 204, 66,
0, 0, 206, 66, 0, 0, 208, 66, 0, 0, 210, 66, 0, 0, 212, 66, 0, 0, 214, 66,
0, 0, 216, 66, 0, 0, 218, 66, 0, 0, 220, 66, 0, 0, 222, 66, 0, 0, 224, 66,
0, 0, 226, 66, 0, 0, 228, 66, 0, 0, 230, 66, 0, 0, 232, 66, 0, 0, 234, 66,
0, 0, 236, 66, 0, 0, 238, 66, 0, 0, 240, 66, 0, 0, 242, 66, 0, 0, 244, 66,
0, 0, 246, 66, 0, 0, 248, 66, 0, 0, 250, 66, 0, 0, 252, 66, 0, 0, 254, 66,
0, 0, 0, 67, 0, 0, 1, 67, 0, 0, 2, 67, 0, 0, 3, 67, 0, 0, 4, 67, 0, 0, 5, 67,
0, 0, 6, 67, 0, 0, 7, 67, 0, 0, 8, 67, 0, 0, 9, 67, 0, 0, 10, 67, 0, 0, 11,
67, 0, 0, 12, 67, 0, 0, 13, 67, 0, 0, 14, 67, 0, 0, 15, 67, 0, 0, 16, 67,
0, 0, 17, 67, 0, 0, 18, 67, 0, 0, 19, 67, 0, 0, 20, 67, 0, 0, 21, 67, 0, 0,
22, 67, 0, 0, 23, 67, 0, 0, 24, 67, 0, 0, 25, 67, 0, 0, 26, 67, 0, 0, 27,
67, 0, 0, 28, 67, 0, 0, 29, 67, 0, 0, 30, 67, 0, 0, 31, 67, 0, 0, 32, 67,
0, 0, 33, 67, 0, 0, 34, 67, 0, 0, 35, 67, 0, 0, 36, 67, 0, 0, 37, 67, 0, 0,
38, 67, 0, 0, 39, 67, 0, 0, 40, 67, 0, 0, 41, 67, 0, 0, 42, 67, 0, 0, 43, 67,
0, 0, 44, 67, 0, 0, 45, 67, 0, 0, 46, 67, 0, 0, 47, 67, 0, 0, 48, 67, 0, 0,
49, 67, 0, 0, 50, 67, 0, 0, 51, 67, 0, 0, 52, 67, 0, 0, 53, 67, 0, 0, 54, 67,
0, 0, 55, 67, 0, 0, 56, 67, 0, 0, 57, 67, 0, 0, 58, 67, 0, 0, 59, 67, 0, 0,
60, 67, 0, 0, 61, 67, 0, 0, 62, 67, 0, 0, 63, 67, 0, 0, 64, 67, 0, 0, 65, 67,
0, 0, 66, 67, 0, 0, 67, 67, 0, 0, 68, 67, 0, 0, 69, 67, 0, 0, 70, 67, 0, 0, 71,
67, 0, 0, 72, 67, 0, 0, 73, 67, 0, 0, 74, 67, 0, 0, 75, 67, 0, 0, 76, 67, 0,
0, 77, 67, 0, 0, 78, 67, 0, 0, 79, 67, 0, 0, 80, 67, 0, 0, 81, 67, 0, 0, 82,
67, 0, 0, 83, 67, 0, 0, 84, 67, 0, 0, 85, 67, 0, 0, 86, 67, 0, 0, 87, 67, 0,
0, 88, 67, 0, 0, 89, 67, 0, 0, 90, 67, 0, 0, 91, 67, 0, 0, 92, 67, 0, 0, 93,
67, 0, 0, 94, 67, 0, 0, 95, 67, 0, 0, 96, 67, 0, 0, 97, 67, 0, 0, 98, 67, 0,
0, 99, 67, 0, 0, 100, 67, 0, 0, 101, 67, 0, 0, 102, 67, 0, 0, 103, 67, 0, 0,
104, 67, 0, 0, 105, 67, 0, 0, 106, 67, 0, 0, 107, 67, 0, 0, 108, 67, 0, 0, 109,
67, 0, 0, 110, 67, 0, 0, 111, 67, 0, 0, 112, 67, 0, 0, 113, 67, 0, 0, 114, 67,
0, 0, 115, 67, 0, 0, 116, 67, 0, 0, 117, 67, 0, 0, 118, 67, 0, 0, 119, 67, 0,
0, 120, 67, 0, 0, 121, 67, 0, 0, 122, 67, 0, 0, 123, 67, 0, 0, 124, 67, 0, 0,
125, 67, 0, 0, 126, 67, 0, 0, 127, 67,
},
fsggml.TensorTypeQ4_K: {
52, 52, 0, 0, 136, 208, 216, 223, 0, 0, 0, 0, 8, 0, 8, 15, 128,
128, 129, 129, 146, 146, 147, 147, 164, 164, 165, 165, 166, 182,
183, 183, 184, 200, 201, 201, 202, 218, 218, 219, 219, 236, 236,
237, 237, 254, 254, 255, 202, 202, 202, 203, 203, 203, 219, 219,
219, 220, 220, 220, 220, 220, 236, 237, 237, 237, 237, 237,
237, 237, 238, 254, 254, 254, 254, 254, 255, 255, 255, 255, 220,
220, 220, 220, 221, 221, 221, 221, 221, 221, 221, 237, 237, 237,
238, 238, 238, 238, 238, 238, 238, 238, 238, 254, 254, 255, 255,
255, 255, 255, 255, 255, 237, 237, 237, 237, 237, 237, 237, 238,
238, 238, 238, 238, 238, 238, 238, 238, 254, 254, 254, 254, 254,
254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
},
fsggml.TensorTypeQ2_K: {
1, 2, 3, 3, 4, 5, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 184, 184,
184, 185, 249, 249, 249, 249, 249, 250, 250, 254, 254, 254, 254,
255, 253, 253, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 171, 69, 0, 0,
},
fsggml.TensorTypeQ5_K: {
32, 48, 0, 0, 136, 208, 216, 223, 0, 0, 0, 0, 8, 0, 7, 15, 254,
254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 0, 1, 2, 19, 20, 37, 38, 55, 56, 73, 74,
91, 92, 109, 110, 127, 112, 128, 129, 146, 147, 164, 165, 182, 183,
200, 201, 218, 219, 236, 237, 254, 133, 133, 149, 150, 150, 150,
167, 167, 167, 168, 184, 184, 185, 185, 201, 202, 202, 202, 219,
219, 219, 219, 236, 236, 236, 237, 253, 253, 254, 254, 254, 255,
169, 169, 169, 169, 186, 186, 186, 186, 186, 187, 187, 203, 203,
203, 204, 204, 204, 220, 220, 221, 221, 221, 221, 237, 237, 238,
238, 238, 238, 254, 255, 255, 203, 203, 203, 204, 204, 204, 204,
204, 220, 220, 220, 221, 221, 221, 221, 221, 237, 237, 238, 238,
238, 238, 238, 238, 254, 255, 255, 255, 255, 255, 255, 255,
},
fsggml.TensorTypeQ6_K: {
96, 110, 92, 90, 88, 70, 68, 50, 48, 46, 44, 42, 24, 22, 4, 2, 80,
95, 78, 77, 76, 59, 58, 57, 40, 39, 38, 21, 20, 19, 2, 1, 75, 75,
74, 57, 57, 56, 55, 39, 38, 37, 21, 20, 20, 19, 2, 2, 72, 55, 55,
54, 54, 37, 37, 36, 36, 19, 19, 18, 18, 1, 1, 0, 35, 35, 35, 35,
34, 18, 18, 18, 17, 17, 17, 1, 1, 0, 0, 0, 35, 35, 34, 34, 18,
18, 18, 17, 17, 17, 17, 1, 0, 0, 0, 0, 35, 35, 35, 19, 19, 18, 18,
18, 18, 18, 1, 1, 1, 1, 1, 1, 34, 34, 18, 18, 18, 18, 17, 17, 17,
17, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 248, 240, 231, 224, 216, 208, 200, 192, 184, 176,
166, 160, 152, 144, 136, 128, 235, 43,
},
fsggml.TensorTypeQ3_K: {
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 20, 23, 23, 7, 7, 6, 6, 6, 2,
1, 1, 1, 1, 0, 0, 22, 22, 6, 6, 5, 5, 5, 1, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 238, 204, 170, 136, 102, 68,
34, 1, 5, 5, 5, 5, 189, 63,
},
}
)

View file

@ -24,7 +24,7 @@ import (
var stream bool = false
func createBinFile(t *testing.T, kv map[string]any, ti []ggml.Tensor) (string, string) {
func createBinFile(t *testing.T, kv map[string]any, ti []*ggml.Tensor) (string, string) {
t.Helper()
t.Setenv("OLLAMA_MODELS", cmp.Or(os.Getenv("OLLAMA_MODELS"), t.TempDir()))

View file

@ -99,7 +99,7 @@ func TestGenerateChat(t *testing.T) {
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []ggml.Tensor{
}, []*ggml.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
@ -158,7 +158,7 @@ func TestGenerateChat(t *testing.T) {
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(0),
}, []ggml.Tensor{})
}, []*ggml.Tensor{})
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "bert",
Files: map[string]string{"bert.gguf": digest},
@ -643,7 +643,7 @@ func TestGenerate(t *testing.T) {
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []ggml.Tensor{
}, []*ggml.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
@ -698,7 +698,7 @@ func TestGenerate(t *testing.T) {
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(0),
}, []ggml.Tensor{})
}, []*ggml.Tensor{})
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "bert",

View file

@ -126,7 +126,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
"tokenizer.ggml.tokens": []string{" "},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []ggml.Tensor{
}, []*ggml.Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
}))