llama: update to commit 71e90e88 (#10192)

This commit is contained in:
Jeffrey Morgan 2025-04-16 18:14:01 -04:00 committed by GitHub
parent 369de832cd
commit 943464ccb8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
160 changed files with 42219 additions and 33080 deletions

View file

@ -10,6 +10,7 @@
#include <cstring>
#include <limits>
#include <vector>
#include <memory>
#if defined(LLAVA_LOG_OFF)
# define LOG_INF(...)
@ -45,6 +46,17 @@ struct clip_image_grid_shape {
int second;
};
// convenience cpp wrapper
struct clip_image_f32_batch_deleter {
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_f32_batch, clip_image_f32_batch_deleter> clip_image_f32_batch_ptr;
struct clip_image_size_deleter {
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
/**
* Selects the best resolution from a list of possible resolutions based on the original size.
*
@ -105,8 +117,8 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
struct ggml_context * ctx;
} model;
const int32_t image_size = clip_image_size(ctx_clip);
const int32_t patch_size = clip_patch_size(ctx_clip);
const int32_t image_size = clip_get_image_size(ctx_clip);
const int32_t patch_size = clip_get_patch_size(ctx_clip);
int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
@ -246,12 +258,9 @@ static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size)
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
clip_image_f32_batch img_res_v;
img_res_v.size = 0;
img_res_v.data = nullptr;
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
clip_image_f32_batch_ptr img_res_v(clip_image_f32_batch_init());
if (!clip_image_preprocess(ctx_clip, img, img_res_v.get())) {
LOG_ERR("%s: unable to preprocess image\n", __func__);
delete[] img_res_v.data;
return false;
}
@ -259,66 +268,72 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
const size_t n_imgs = clip_image_f32_batch_n_images(img_res_v.get());
if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) {
std::vector<float *> image_embd_v;
image_embd_v.resize(img_res_v.size);
struct clip_image_size * load_image_size = clip_image_size_init();
image_embd_v.resize(n_imgs);
clip_image_size load_image_size;
for (size_t i = 0; i < img_res_v.size; i++) {
for (size_t i = 0; i < n_imgs; i++) {
const int64_t t_img_enc_step_start_us = ggml_time_us();
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
int patch_size=14;
load_image_size->width = img_res_v.data[i].nx;
load_image_size->height = img_res_v.data[i].ny;
clip_add_load_image_size(ctx_clip, load_image_size);
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, nx, ny));
int patch_size = 14;
load_image_size.width = nx;
load_image_size.height = ny;
clip_add_load_image_size(ctx_clip, &load_image_size);
bool encoded = false;
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
if (clip_is_qwen2vl(ctx_clip)) {
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]);
}
else {
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(img_res, patch_size), image_embd_v[i]);
}
if (!encoded) {
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
return false;
}
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)n_imgs, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
}
const int64_t t_img_enc_batch_us = ggml_time_us();
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
int n_img_pos_out = 0;
for (size_t i = 0; i < image_embd_v.size(); i++) {
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
std::memcpy(
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
image_embd_v[i],
clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
n_img_pos_out += clip_n_patches_by_img(ctx_clip, &img_res_v.data[i]);
clip_embd_nbytes_by_img(ctx_clip, nx, ny));
n_img_pos_out += clip_n_patches_by_img(ctx_clip, img_res);
}
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {
free(image_embd_v[i]);
}
image_embd_v.clear();
load_image_size->width = img->nx;
load_image_size->height = img->ny;
clip_add_load_image_size(ctx_clip, load_image_size);
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
delete[] img_res_v.data;
img_res_v.size = 0;
img_res_v.data = nullptr;
load_image_size.width = img->nx;
load_image_size.height = img->ny;
clip_add_load_image_size(ctx_clip, &load_image_size);
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size.width, load_image_size.height);
}
else if (clip_is_glm(ctx_clip)){
struct clip_image_size * load_image_size = clip_image_size_init();
load_image_size->width = img_res_v.data[0].nx;
load_image_size->height = img_res_v.data[0].ny;
load_image_size->width = clip_image_f32_batch_nx(img_res_v.get(), 0);
load_image_size->height = clip_image_f32_batch_ny(img_res_v.get(), 0);
clip_add_load_image_size(ctx_clip, load_image_size);
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd);
int pos = int(load_image_size->width/clip_patch_size(ctx_clip)/2);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd);
int pos = int(load_image_size->width/clip_get_patch_size(ctx_clip)/2);
*n_img_pos = (pos * pos + 2);
if (!encoded){
LOG_ERR("Unable to encode image \n");
@ -328,8 +343,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding
*n_img_pos = clip_n_patches(ctx_clip);
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
delete[] img_res_v.data;
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
if (!encoded) {
LOG_ERR("Unable to encode image\n");
@ -340,17 +355,18 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
// spatial_unpad llava-1.6 type embedding
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
std::vector<float *> image_embd_v;
image_embd_v.resize(img_res_v.size);
for (size_t i = 0; i < img_res_v.size; i++) {
image_embd_v.resize(n_imgs);
for (size_t i = 0; i < n_imgs; i++) {
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
const bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
if (!encoded) {
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
return false;
}
}
const int64_t t_img_enc_batch_us = ggml_time_us();
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
const int32_t * image_grid = clip_image_grid(ctx_clip);
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
@ -360,12 +376,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
}
// free all img_res_v - not needed anymore
delete[] img_res_v.data;
img_res_v.size = 0;
img_res_v.data = nullptr;
const int32_t image_size = clip_image_size(ctx_clip);
const int32_t image_size = clip_get_image_size(ctx_clip);
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);