llama: update to commit 2016f07b (#10352)

This commit is contained in:
Jeffrey Morgan 2025-04-25 09:26:02 +09:00 committed by GitHub
parent 11dde41824
commit e9e5f61c45
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
46 changed files with 1967 additions and 1753 deletions

View file

@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=71e90e8813f90097701e62f7fce137d96ddf41e2
FETCH_HEAD=2016f07bd106c73699ecbaace80f55db5ed95dac
.PHONY: help
help:

2
llama/build-info.cpp generated vendored
View file

@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "71e90e8813f90097701e62f7fce137d96ddf41e2";
char const *LLAMA_COMMIT = "2016f07bd106c73699ecbaace80f55db5ed95dac";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View file

@ -50,7 +50,6 @@
// tensor name constants
//
#define TN_TOKEN_EMBD "%s.token_embd.weight"
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
@ -66,8 +65,6 @@
#define TN_LN_2 "%s.blk.%d.ln2.%s"
#define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s"
#define TN_TEXT_PROJ "text_projection.weight"
#define TN_VIS_PROJ "visual_projection.weight"
#define TN_LLAVA_PROJ "mm.%d.%s"
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"

View file

@ -27,6 +27,7 @@
#include <sstream>
#include <cinttypes>
#include <limits>
#include <array>
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
@ -1719,10 +1720,22 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
return true;
}
// Linear interpolation between two points
inline float clip_lerp(float s, float e, float t) {
return s + (e - s) * t;
// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
dst.nx = src.nx;
dst.ny = src.ny;
dst.buf.resize(src.buf.size());
// TODO @ngxson : seems like this could be done more efficiently on cgraph
for (size_t i = 0; i < src.buf.size(); ++i) {
int c = i % 3; // rgb
dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
}
}
// set of tools to manupulate images
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
struct image_manipulation {
// Bilinear resize function
static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
dst.nx = target_width;
@ -1742,39 +1755,24 @@ static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int ta
float y_lerp = py - y_floor;
for (int c = 0; c < 3; c++) {
float top = clip_lerp(
float top = lerp(
static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
x_lerp
);
float bottom = clip_lerp(
float bottom = lerp(
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
x_lerp
);
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
}
}
}
}
// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
dst.nx = src.nx;
dst.ny = src.ny;
dst.buf.resize(src.buf.size());
// TODO @ngxson : seems like this could be done more efficiently on cgraph
for (size_t i = 0; i < src.buf.size(); ++i) {
int c = i % 3; // rgb
dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
}
}
inline int clip(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
// Bicubic resize function
// part of image will be cropped if the aspect ratio is different
static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
const int nx = img.nx;
const int ny = img.ny;
@ -1838,10 +1836,12 @@ static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int t
return true;
}
// llava-1.6 type of resize_and_pad (black)
static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
int target_width = target_resolution.first;
int target_height = target_resolution.second;
// llava-1.6 type of resize_and_pad
// if the ratio is not 1:1, padding with pad_color will be applied
// pad_color is single channel, default is 0 (black)
static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
int target_width = target_resolution.width;
int target_height = target_resolution.height;
float scale_w = static_cast<float>(target_width) / image.nx;
float scale_h = static_cast<float>(target_height) / image.ny;
@ -1857,13 +1857,19 @@ static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &imag
}
clip_image_u8 resized_image;
// bilinear_resize(image, resized_image, new_width, new_height);
bicubic_resize(image, resized_image, new_width, new_height);
clip_image_u8 padded_image;
padded_image.nx = target_width;
padded_image.ny = target_height;
padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
padded_image.buf.resize(3 * target_width * target_height);
// Fill the padded image with the fill color
for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
padded_image.buf[i] = pad_color[0];
padded_image.buf[i + 1] = pad_color[1];
padded_image.buf[i + 2] = pad_color[2];
}
// Calculate padding offsets
int pad_x = (target_width - new_width) / 2;
@ -1877,26 +1883,223 @@ static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &imag
}
}
}
image_output = std::move(padded_image);
dst = std::move(padded_image);
}
static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
dst.nx = w;
dst.ny = h;
dst.buf.resize(3 * w * h);
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int src_idx = 3 * ((y + i)*image.nx + (x + j));
int dst_idx = 3 * (i*w + j);
dst.buf[dst_idx] = image.buf[src_idx];
dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
}
}
}
private:
static inline int clip(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
// Linear interpolation between two points
static inline float lerp(float s, float e, float t) {
return s + (e - s) * t;
}
};
/**
* implementation of LLaVA-UHD:
* - https://arxiv.org/pdf/2403.11703
* - https://github.com/thunlp/LLaVA-UHD
* - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
*
* overview:
* - an image always have a single overview (downscaled image)
* - an image can have 0 or multiple slices, depending on the image size
* - each slice can then be considered as a separate image
*
* for example:
*
* [overview] --> [slice 1] --> [slice 2]
* | |
* +--> [slice 3] --> [slice 4]
*/
struct llava_uhd {
struct slice_coordinates {
int x;
int y;
clip_image_size size;
};
struct slice_instructions {
clip_image_size overview_size; // size of downscaled image
clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
std::vector<slice_coordinates> slices;
bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
};
static int get_max_slices(struct clip_ctx * ctx) {
if (clip_is_minicpmv(ctx)) {
return 9;
}
return 0;
}
static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
slice_instructions res;
const int patch_size = clip_get_patch_size(ctx);
const int slice_size = clip_get_image_size(ctx);
const int max_slice_nums = get_max_slices(ctx);
const int original_width = original_size.width;
const int original_height = original_size.height;
const float log_ratio = log((float)original_width / original_height);
const float ratio = (float)original_width * original_height / (slice_size * slice_size);
const int multiple = fmin(ceil(ratio), max_slice_nums);
const bool has_slices = (multiple > 1);
const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty();
if (has_pinpoints) {
// has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
auto refine_size = llava_uhd::select_best_resolution(
ctx->vision_model.hparams.image_grid_pinpoints,
original_size);
res.overview_size = clip_image_size{slice_size, slice_size};
res.refined_size = refine_size;
res.grid_size = clip_image_size{0, 0};
res.padding_refined = true;
for (int y = 0; y < refine_size.height; y += slice_size) {
for (int x = 0; x < refine_size.width; x += slice_size) {
slice_coordinates slice;
slice.x = x;
slice.y = y;
slice.size.width = std::min(slice_size, refine_size.width - x);
slice.size.height = std::min(slice_size, refine_size.height - y);
res.slices.push_back(slice);
if (x == 0) {
res.grid_size.width++;
}
}
res.grid_size.height++;
}
return res;
}
// no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
auto best_size = get_best_resize(original_size, slice_size, patch_size, has_slices);
res.overview_size = best_size;
if (!has_slices) {
// skip slicing logic
res.refined_size = clip_image_size{0, 0};
res.grid_size = clip_image_size{0, 0};
} else {
auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
res.grid_size = best_grid;
res.refined_size = refine_size;
int width = refine_size.width;
int height = refine_size.height;
int grid_x = int(width / best_grid.width);
int grid_y = int(height / best_grid.height);
for (int patches_y = 0, ic = 0;
patches_y < refine_size.height && ic < best_grid.height;
patches_y += grid_y, ic += 1) {
for (int patches_x = 0, jc = 0;
patches_x < refine_size.width && jc < best_grid.width;
patches_x += grid_x, jc += 1) {
slice_coordinates slice;
slice.x = patches_x;
slice.y = patches_y;
slice.size.width = grid_x;
slice.size.height = grid_y;
res.slices.push_back(slice);
// LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
}
}
}
return res;
}
static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
std::vector<clip_image_u8_ptr> output;
// resize to overview size
clip_image_u8_ptr resized_img(clip_image_u8_init());
image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
output.push_back(std::move(resized_img));
if (inst.slices.empty()) {
// no slices, just return the resized image
return output;
}
// resize to refined size
clip_image_u8_ptr refined_img(clip_image_u8_init());
if (inst.padding_refined) {
image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
} else {
image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
}
// create slices
for (const auto & slice : inst.slices) {
int x = slice.x;
int y = slice.y;
int w = slice.size.width;
int h = slice.size.height;
clip_image_u8_ptr img_slice(clip_image_u8_init());
image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
output.push_back(std::move(img_slice));
}
return output;
}
private:
static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width = original_size.width;
int height = original_size.height;
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
float r = static_cast<float>(width) / height;
height = static_cast<int>(scale_resolution / std::sqrt(r));
width = static_cast<int>(height * r);
}
clip_image_size res;
res.width = ensure_divide(width, patch_size);
res.height = ensure_divide(height, patch_size);
return res;
}
/**
* Selects the best resolution from a list of possible resolutions based on the original size.
*
* @param original_size The original size of the image in the format (width, height).
* @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
* @return The best fit resolution in the format (width, height).
* @param original_size The original size of the image
* @param possible_resolutions A list of possible resolutions
* @return The best fit resolution
*/
static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
int original_width = original_size.first;
int original_height = original_size.second;
std::pair<int, int> best_fit;
static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
int original_width = original_size.width;
int original_height = original_size.height;
clip_image_size best_fit;
int max_effective_resolution = 0;
int min_wasted_resolution = std::numeric_limits<int>::max();
for (const auto & resolution : possible_resolutions) {
int width = resolution.first;
int height = resolution.second;
int width = resolution.width;
int height = resolution.height;
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
int downscaled_width = static_cast<int>(original_width * scale);
int downscaled_height = static_cast<int>(original_height * scale);
@ -1913,69 +2116,43 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int> & or
return best_fit;
}
static std::vector<clip_image_u8_ptr> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
std::vector<clip_image_u8_ptr> patches;
int width = image.nx;
int height = image.ny;
for (int i = 0; i < height; i += patch_size) {
for (int j = 0; j < width; j += patch_size) {
clip_image_u8_ptr patch(clip_image_u8_init());
patch->nx = std::min(patch_size, width - j);
patch->ny = std::min(patch_size, height - i);
patch->buf.resize(3 * patch->nx * patch->ny);
for (int y = 0; y < patch->ny; ++y) {
for (int x = 0; x < patch->nx; ++x) {
for (int c = 0; c < 3; ++c) {
patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
// used by llava 1.6 with custom list of pinpoints
static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
std::vector<clip_image_size> possible_resolutions;
for (size_t i = 0; i < pinpoints.size(); i += 2) {
possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
}
}
}
patches.push_back(std::move(patch));
}
}
return patches;
return select_best_resolution(original_size, possible_resolutions);
}
static int ensure_divide(int length, int patch_size) {
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
}
static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width = original_size.first;
int height = original_size.second;
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
float r = static_cast<float>(width) / height;
height = static_cast<int>(scale_resolution / std::sqrt(r));
width = static_cast<int>(height * r);
}
int best_width = ensure_divide(width, patch_size);
int best_height = ensure_divide(height, patch_size);
return std::make_pair(best_width, best_height);
}
static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width, height;
std::tie(width, height) = original_size;
int grid_x, grid_y;
std::tie(grid_x, grid_y) = grid;
static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width = original_size.width;
int height = original_size.height;
int grid_x = grid.width;
int grid_y = grid.height;
int refine_width = ensure_divide(width, grid_x);
int refine_height = ensure_divide(height, grid_y);
int grid_width = refine_width / grid_x;
int grid_height = refine_height / grid_y;
clip_image_size grid_size;
grid_size.width = refine_width / grid_x;
grid_size.height = refine_height / grid_y;
// auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
int best_grid_width, best_grid_height;
std::tie(best_grid_width, best_grid_height) = best_grid_size;
auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
int best_grid_width = best_grid_size.width;
int best_grid_height = best_grid_size.height;
// std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
clip_image_size refine_size;
refine_size.width = best_grid_width * grid_x;
refine_size.height = best_grid_height * grid_y;
return refine_size;
}
static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
std::vector<int> candidate_split_grids_nums;
for (int i : {multiple - 1, multiple, multiple + 1}) {
if (i == 1 || i > max_slice_nums) {
@ -1984,21 +2161,21 @@ static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int mul
candidate_split_grids_nums.push_back(i);
}
std::vector<std::pair<int, int>> candidate_grids;
std::vector<clip_image_size> candidate_grids;
for (int split_grids_nums : candidate_split_grids_nums) {
int m = 1;
while (m <= split_grids_nums) {
if (split_grids_nums % m == 0) {
candidate_grids.emplace_back(m, split_grids_nums / m);
candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
}
++m;
}
}
std::pair<int, int> best_grid{1, 1};
clip_image_size best_grid{1, 1};
float min_error = std::numeric_limits<float>::infinity();
for (const auto& grid : candidate_grids) {
float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
if (error < min_error) {
best_grid = grid;
min_error = error;
@ -2006,102 +2183,40 @@ static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int mul
}
return best_grid;
}
};
// inspired from LLaVA-UHD:
// -> https://arxiv.org/pdf/2403.11703
// -> https://github.com/thunlp/LLaVA-UHD
// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
static std::vector<std::vector<clip_image_u8_ptr>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
const std::pair<int, int> original_size={img->nx,img->ny};
const int original_width = img->nx;
const int original_height = img->ny;
const float log_ratio = log(1.0*original_width/original_height);
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
const int multiple = fmin(ceil(ratio), max_slice_nums);
std::vector<std::vector<clip_image_u8_ptr>> images;
LOG_DBG("%s: multiple %d\n", __func__, multiple);
images.push_back(std::vector<clip_image_u8_ptr>());
if (multiple <= 1) {
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
clip_image_u8_ptr source_image(clip_image_u8_init());
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
// source_image = image.resize(best_size, Image.Resampling.BICUBIC)
images.back().push_back(std::move(source_image));
}
else if (multiple > 1) {
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
clip_image_u8_ptr source_image(clip_image_u8_init());
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
// source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
LOG_DBG("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
images.back().push_back(std::move(source_image));
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
LOG_DBG("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
clip_image_u8_ptr refine_image(clip_image_u8_init());
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
LOG_DBG("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
// split_to_patches
int width = refine_image->nx;
int height = refine_image->ny;
int grid_x = int(width / best_grid.first);
int grid_y = int(height / best_grid.second);
for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
images.push_back(std::vector<clip_image_u8_ptr>());
for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
clip_image_u8_ptr patch(clip_image_u8_init());
patch->nx = grid_x;
patch->ny = grid_y;
patch->buf.resize(3 * patch->nx * patch->ny);
for (int y = patches_i; y < patches_i + grid_y; ++y) {
for (int x = patches_j; x < patches_j + grid_x; ++x) {
const int i = 3 * (y * refine_image->nx + x);
const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
patch->buf[j] = refine_image->buf[i];
patch->buf[j+1] = refine_image->buf[i+1];
patch->buf[j+2] = refine_image->buf[i+2];
}
}
images.back().push_back(std::move(patch));
}
}
}
return images;
}
// TODO @ngxson : decprecate the load_image_size singleton pattern
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
const int max_slice_nums=9;
const int scale_resolution=448;
const int original_width = ctx_clip->load_image_size.width;
const int original_height = ctx_clip->load_image_size.height;
const float log_ratio = log(1.0*original_width/original_height);
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
const int multiple = fmin(ceil(ratio), max_slice_nums);
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
return best_grid.first;
const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size);
return inst.grid_size.width;
}
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
if (!ctx->has_vision_encoder) {
LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
return false;
}
clip_image_size original_size{img->nx, img->ny};
bool pad_to_square = true;
auto & params = ctx->vision_model.hparams;
// The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
pad_to_square = false;
}
if (clip_is_minicpmv(ctx)) {
int max_slice_nums = 9;
std::vector<std::vector<clip_image_u8_ptr>> imgs = uhd_slice_image(img, max_slice_nums);
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
for (size_t i = 0; i < imgs.size(); ++i) {
for (size_t j = 0; j < imgs[i].size(); ++j) {
LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
// clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i][j], *res, ctx->image_mean, ctx->image_std);
normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
}
}
return true;
}
else if (ctx->has_qwen2vl_merger) {
@ -2109,7 +2224,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
auto patch_size = clip_get_patch_size(ctx) * 2;
int nx = ceil((float)img->nx / patch_size) * patch_size;
int ny = ceil((float)img->ny / patch_size) * patch_size;
bicubic_resize(*img, resized, nx, ny);
image_manipulation::bicubic_resize(*img, resized, nx, ny);
clip_image_f32_ptr img_f32(clip_image_f32_init());
// clip_image_f32_ptr res(clip_image_f32_init());
@ -2121,8 +2236,8 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
if (ctx->has_glm_projector || ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
clip_image_u8 resized_image;
int32_t sz=ctx->vision_model.hparams.image_size;
bicubic_resize(*img, resized_image,sz,sz);
int sz = params.image_size;
image_manipulation::bicubic_resize(*img, resized_image, sz, sz);
clip_image_f32_ptr img_f32(clip_image_f32_init());
//clip_image_save_to_bmp(resized_image, "resized.bmp");
normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
@ -2130,156 +2245,47 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
return true;
}
bool pad_to_square = true;
if (!ctx->has_vision_encoder) {
LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
return false;
}
auto & params = ctx->vision_model.hparams;
// The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
pad_to_square = false;
}
// free the previous res_imgs if any set
res_imgs->entries.clear();
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
if (pad_to_square && img->nx != img->ny) {
int longer_side = std::max(img->nx, img->ny);
if (pad_to_square) {
// for llava-1.5, we resize image to a square, and pad the shorter side with a background color
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
const int longer_side = std::max(img->nx, img->ny);
temp->nx = longer_side;
temp->ny = longer_side;
temp->buf.resize(3 * longer_side * longer_side);
const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
// fill with background color
for (size_t i = 0; i < temp->buf.size(); i++) {
temp->buf[i] = bc[i % 3];
}
// background color in RGB from LLaVA (this is the mean rgb color * 255)
const std::array<uint8_t, 3> pad_color = {122, 116, 104};
// copy from the input image
for (int y = 0; y < img->ny; y++) {
for (int x = 0; x < img->nx; x++) {
const int i = 3 * (y * img->nx + x);
const int j = 3 * (y * temp->nx + x);
temp->buf[j] = img->buf[i];
temp->buf[j+1] = img->buf[i+1];
temp->buf[j+2] = img->buf[i+2];
}
}
} else {
if (!params.image_grid_pinpoints.empty()) {
// resize the image to the target_size
image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
return true;
} else if (!params.image_grid_pinpoints.empty()) {
// "spatial_unpad" with "anyres" processing for llava-1.6
std::vector<std::pair<int, int>> possible_resolutions;
for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) {
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
}
std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
// clip_image_save_to_bmp(*img, "input.bmp");
resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6
// clip_image_save_to_bmp(*temp, "resized.bmp");
// visually verify normalized image:
// normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
// {
// clip_image_u8 * temp2 = clip_image_u8_init();
// clip_image_convert_f32_to_u8(*res, *temp2);
// clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
// clip_image_u8_free(temp2);
// }
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
std::vector<clip_image_u8_ptr> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
clip_image_u8_ptr image_original_resize(clip_image_u8_init());
// bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
patches.insert(patches.begin(), std::move(image_original_resize));
for (auto & patch : patches) {
for (size_t i = 0; i < imgs.size(); ++i) {
// clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*patch, *res, ctx->image_mean, ctx->image_std);
normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
}
return true;
} else {
temp->nx = img->nx;
temp->ny = img->ny;
temp->buf.resize(img->buf.size());
memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
}
}
const int nx = temp->nx;
const int ny = temp->ny;
// clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
const int nx2 = ctx->vision_model.hparams.image_size;
const int ny2 = ctx->vision_model.hparams.image_size;
clip_image_f32_ptr res(clip_image_f32_init());
res->nx = nx2;
res->ny = ny2;
res->buf.resize(3 * nx2 * ny2);
const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
const int nx3 = int(nx / scale + 0.5f);
const int ny3 = int(ny / scale + 0.5f);
const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
for (int y = 0; y < ny3; y++) {
for (int x = 0; x < nx3; x++) {
for (int c = 0; c < 3; c++) {
// linear interpolation
const float sx = (x + 0.5f) * scale - 0.5f;
const float sy = (y + 0.5f) * scale - 0.5f;
const int x0 = std::max(0, (int)std::floor(sx));
const int y0 = std::max(0, (int)std::floor(sy));
const int x1 = std::min(x0 + 1, nx - 1);
const int y1 = std::min(y0 + 1, ny - 1);
const float dx = sx - x0;
const float dy = sy - y0;
const int j00 = 3 * (y0 * nx + x0) + c;
const int j01 = 3 * (y0 * nx + x1) + c;
const int j10 = 3 * (y1 * nx + x0) + c;
const int j11 = 3 * (y1 * nx + x1) + c;
const float v00 = temp->buf[j00];
const float v01 = temp->buf[j01];
const float v10 = temp->buf[j10];
const float v11 = temp->buf[j11];
const float v0 = v00 * (1.0f - dx) + v01 * dx;
const float v1 = v10 * (1.0f - dx) + v11 * dx;
const float v = v0 * (1.0f - dy) + v1 * dy;
const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
const int i = 3 * (y * nx3 + x) + c;
res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
}
}
}
// {
// clip_image_u8 * temp2 = clip_image_u8_init();
// clip_image_convert_f32_to_u8(*res, *temp2);
// clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
// clip_image_u8_free(temp2);
// }
// res_imgs.push_back(res);
res_imgs->entries.push_back(std::move(res));
return true;
GGML_ASSERT(false && "Unknown image preprocessing type");
}
ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {

View file

@ -145,6 +145,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
@ -1142,6 +1144,8 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
{ LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
{ LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
{ LLM_TENSOR_ATTN_K_B, "blk.%d.attn_k_b" },
{ LLM_TENSOR_ATTN_V_B, "blk.%d.attn_v_b" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
@ -1636,23 +1640,8 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_ATTN_Q_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_KV_A_MQA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_KV_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_DEC_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_DEC_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_DOWN_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_GATE_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_UP_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_Q_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_Q_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_KV_A_MQA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_KV_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_K_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_V_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_DEC_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_DEC_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_DEC_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},

View file

@ -149,6 +149,8 @@ enum llm_kv {
LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
@ -311,6 +313,8 @@ enum llm_tensor {
LLM_TENSOR_ATTN_Q_B,
LLM_TENSOR_ATTN_KV_A_MQA,
LLM_TENSOR_ATTN_KV_B,
LLM_TENSOR_ATTN_K_B,
LLM_TENSOR_ATTN_V_B,
LLM_TENSOR_ATTN_Q_A_NORM,
LLM_TENSOR_ATTN_KV_A_NORM,
LLM_TENSOR_ATTN_SUB_NORM,

View file

@ -10,6 +10,7 @@
#include <cstring>
#include <stdexcept>
#include <cinttypes>
#include <cmath>
//
// llama_context
@ -473,7 +474,6 @@ ggml_tensor * llama_context::build_rope_shift(
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
const auto & yarn_attn_factor = cparams.yarn_attn_factor;
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
@ -482,6 +482,10 @@ ggml_tensor * llama_context::build_rope_shift(
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type;
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;
ggml_tensor * tmp;
if (ggml_is_quantized(cur->type)) {

View file

@ -1194,6 +1194,7 @@ ggml_tensor * llm_graph_context::build_attn_mha(
ggml_tensor * v,
ggml_tensor * kq_b,
ggml_tensor * kq_mask,
ggml_tensor * v_mla,
bool v_trans,
float kq_scale) const {
//const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
@ -1205,8 +1206,6 @@ ggml_tensor * llm_graph_context::build_attn_mha(
//const auto & n_embd_head_k = hparams.n_embd_head_k;
//const auto & n_embd_head_v = hparams.n_embd_head_v;
const auto n_embd_head_v = v_trans ? v->ne[1] : v->ne[0];
const auto n_tokens = q->ne[1];
const auto n_head = q->ne[2];
const auto n_kv = k->ne[1];
@ -1235,7 +1234,12 @@ ggml_tensor * llm_graph_context::build_attn_mha(
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
cur = ggml_reshape_2d(ctx0, cur, n_embd_head_v*n_head, n_tokens);
if (v_mla) {
cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
cur = ggml_mul_mat(ctx0, v_mla, cur);
}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
} else {
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
@ -1273,9 +1277,14 @@ ggml_tensor * llm_graph_context::build_attn_mha(
ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
// for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
if (v_mla) {
kqv = ggml_mul_mat(ctx0, v_mla, kqv);
}
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
if (!cparams.offload_kqv) {
// all nodes between the KV store and the attention output are run on the CPU
@ -1310,6 +1319,7 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * v_mla,
float kq_scale,
int il) const {
GGML_UNUSED(n_tokens);
@ -1331,7 +1341,7 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
//cb(k, "v", il);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, false, kq_scale);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, false, kq_scale);
cb(cur, "kqv_out", il);
@ -1385,6 +1395,7 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * v_mla,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
@ -1470,7 +1481,7 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_element_size(kv_self->v_l[il])*n_ctx*n_embd_head_v,
0);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_trans, kq_scale);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, v_trans, kq_scale);
cb(cur, "kqv_out", il);
if (wo) {
@ -1529,6 +1540,7 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * v_mla,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
@ -1548,7 +1560,7 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
//cb(k, "v", il);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, false, kq_scale);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, false, kq_scale);
cb(cur, "kqv_out", il);
@ -1717,4 +1729,3 @@ void llm_graph_context::build_pooling(
ggml_build_forward_expand(gf, cur);
}

View file

@ -522,6 +522,7 @@ struct llm_graph_context {
ggml_tensor * v, // [n_embd_head_v, n_tokens, n_head_v] (v_trans == false)
ggml_tensor * kq_b,
ggml_tensor * kq_mask,
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
bool v_trans,
float kq_scale) const;
@ -536,6 +537,7 @@ struct llm_graph_context {
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
ggml_tensor * kq_b,
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
float kq_scale,
int il) const;
@ -550,6 +552,7 @@ struct llm_graph_context {
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
ggml_tensor * kq_b,
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
float kq_scale,
int il) const;
@ -564,6 +567,7 @@ struct llm_graph_context {
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
ggml_tensor * kq_b,
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
float kq_scale,
int il) const;

View file

@ -46,6 +46,10 @@ struct llama_hparams {
uint32_t n_rel_attn_bkts = 0;
uint32_t n_vocab = 0;
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
uint32_t n_embd_head_k_mla = 0;
uint32_t n_embd_head_v_mla = 0;
// for WavTokenizer
struct llama_hparams_posnet posnet;
struct llama_hparams_convnext convnext;

View file

@ -27,7 +27,7 @@ bool llama_kv_cache_unified::init(
recurrent = llama_model_is_recurrent(&model);
v_trans = !recurrent && !cparams.flash_attn;
can_shift = !recurrent && model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
can_shift = !recurrent;
LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d\n",
__func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, can_shift);

View file

@ -1170,6 +1170,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
}
ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
@ -3281,8 +3283,14 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
{
const bool is_lite = (hparams.n_layer == 27);
const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
// note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
const int64_t n_embd_head_qk_rope = hparams.n_rot;
const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
const int64_t q_lora_rank = hparams.n_lora_q;
const int64_t kv_lora_rank = hparams.n_lora_kv;
@ -3308,14 +3316,22 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
if (!is_lite) {
layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
} else {
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
}
layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
// note: only old legacy GGUF files will have the unsplit wkv_b tensor in
if (is_mla) {
layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
} else {
layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
}
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
@ -4394,6 +4410,8 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
@ -4600,7 +4618,7 @@ struct llm_build_llama : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
@ -4910,7 +4928,7 @@ struct llm_build_mllama: public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
if (il == n_layer - 1) {
// skip computing output for unused tokens
@ -5053,7 +5071,7 @@ struct llm_build_deci : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
}
if (il == n_layer - 1) {
@ -5195,7 +5213,7 @@ struct llm_build_baichuan : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -5310,7 +5328,7 @@ struct llm_build_xverse : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -5435,7 +5453,7 @@ struct llm_build_falcon : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -5565,7 +5583,7 @@ struct llm_build_grok : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f, il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1) {
@ -5716,7 +5734,7 @@ struct llm_build_dbrx : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -5830,7 +5848,7 @@ struct llm_build_starcoder : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -5929,7 +5947,7 @@ struct llm_build_refact : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -6083,7 +6101,7 @@ struct llm_build_bert : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
cb(cur, "kqv_out", il);
if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
@ -6200,7 +6218,7 @@ struct llm_build_bloom : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -6341,7 +6359,7 @@ struct llm_build_mpt : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -6487,7 +6505,7 @@ struct llm_build_stablelm : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -6610,7 +6628,7 @@ struct llm_build_qwen : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -6730,7 +6748,7 @@ struct llm_build_qwen2 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -6851,7 +6869,7 @@ struct llm_build_qwen2vl : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -6978,7 +6996,7 @@ struct llm_build_qwen2moe : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -7131,7 +7149,7 @@ struct llm_build_qwen3 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -7252,7 +7270,7 @@ struct llm_build_qwen3moe : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -7392,7 +7410,7 @@ struct llm_build_phi2 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f, il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1) {
@ -7521,7 +7539,7 @@ struct llm_build_phi3 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f, il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1) {
@ -7656,7 +7674,7 @@ struct llm_build_plamo : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
ggml_tensor * sa_out = cur;
@ -7763,7 +7781,7 @@ struct llm_build_gpt2 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -7879,7 +7897,7 @@ struct llm_build_codeshell : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -8008,7 +8026,7 @@ struct llm_build_orion : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -8135,7 +8153,7 @@ struct llm_build_internlm2 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -8332,7 +8350,7 @@ struct llm_build_minicpm3 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
q_states, k_states, v_states, nullptr, kq_scale, il);
q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
}
if (il == n_layer - 1) {
@ -8462,7 +8480,7 @@ struct llm_build_gemma : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f, il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1) {
@ -8584,7 +8602,7 @@ struct llm_build_gemma2 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f, il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
}
cur = build_norm(cur,
@ -8725,7 +8743,7 @@ struct llm_build_gemma3 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, hparams.f_attention_scale, il);
Qcur, Kcur, Vcur, nullptr, nullptr, hparams.f_attention_scale, il);
}
cur = build_norm(cur,
@ -8865,7 +8883,7 @@ struct llm_build_starcoder2 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -9200,7 +9218,7 @@ struct llm_build_command_r : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -9335,7 +9353,7 @@ struct llm_build_cohere2 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -9466,7 +9484,7 @@ struct llm_build_olmo : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, nullptr,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -9586,7 +9604,7 @@ struct llm_build_olmo2 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
cur = build_norm(cur,
@ -9719,7 +9737,7 @@ struct llm_build_olmoe : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -9852,7 +9870,7 @@ struct llm_build_openelm : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -9966,7 +9984,7 @@ struct llm_build_gptneox : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -10116,7 +10134,7 @@ struct llm_build_arctic : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -10271,7 +10289,7 @@ struct llm_build_deepseek : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
}
if (il == n_layer - 1) {
@ -10361,15 +10379,22 @@ struct llm_build_deepseek2 : public llm_graph_context {
llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
bool is_lite = (hparams.n_layer == 27);
const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
// note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
const int64_t n_embd_head_qk_rope = hparams.n_rot;
const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
// We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
const uint32_t n_embd_head_qk_rope = hparams.n_rot;
const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(n_embd_head_k));
const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
ggml_tensor * cur;
ggml_tensor * inpL;
@ -10395,16 +10420,14 @@ struct llm_build_deepseek2 : public llm_graph_context {
{
ggml_tensor * q = NULL;
if (!is_lite) {
// {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
cb(q, "q", il);
q = build_norm(q,
model.layers[il].attn_q_a_norm, NULL,
model.layers[il].attn_q_a_norm, nullptr,
LLM_NORM_RMS, il);
cb(q, "q", il);
// {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
cb(q, "q", il);
} else {
@ -10412,96 +10435,125 @@ struct llm_build_deepseek2 : public llm_graph_context {
cb(q, "q", il);
}
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
// split into {n_embd_head_qk_nope, n_head, n_tokens}
ggml_tensor * q_nope = ggml_view_3d(ctx0, q,
n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(q->type, n_embd_head_k),
ggml_row_size(q->type, n_embd_head_k) * n_head,
0);
cb(q_nope, "q_nope", il);
// and {n_head * n_embd_head_qk_rope, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
// and {n_embd_head_qk_rope, n_head, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(ctx0, q,
n_embd_head_qk_rope, n_head, n_tokens,
ggml_row_size(q->type, n_embd_head_k),
ggml_row_size(q->type, n_embd_head_k) * n_head,
ggml_row_size(q->type, n_embd_head_qk_nope));
cb(q_pe, "q_pe", il);
// {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
cb(kv_pe_compresseed, "kv_pe_compresseed", il);
ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
cb(kv_cmpr_pe, "kv_cmpr_pe", il);
// split into {kv_lora_rank, n_tokens}
ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
kv_pe_compresseed->nb[1],
ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe,
kv_lora_rank, n_tokens,
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
0);
cb(kv_compressed, "kv_compressed", il);
cb(kv_cmpr, "kv_cmpr", il);
// and {n_embd_head_qk_rope, n_tokens}
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
kv_pe_compresseed->nb[1],
kv_pe_compresseed->nb[1],
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
// and {n_embd_head_qk_rope, 1, n_tokens}
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe,
n_embd_head_qk_rope, 1, n_tokens,
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
cb(k_pe, "k_pe", il);
// TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
kv_compressed = ggml_cont(ctx0, kv_compressed);
kv_compressed = build_norm(kv_compressed,
model.layers[il].attn_kv_a_norm, NULL,
LLM_NORM_RMS, il);
cb(kv_compressed, "kv_compressed", il);
// {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
cb(kv, "kv", il);
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
0);
cb(k_nope, "k_nope", il);
// and {n_head * n_embd_head_v, n_tokens}
ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
ggml_row_size(kv->type, (n_embd_head_qk_nope)));
cb(v_states, "v_states", il);
v_states = ggml_cont(ctx0, v_states);
cb(v_states, "v_states", il);
v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
0);
cb(v_states, "v_states", il);
q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
q_pe = ggml_rope_ext(
ctx0, q_pe, inp_pos, nullptr,
q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor_scaled, beta_fast, beta_slow
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(q_pe, "q_pe", il);
// shared RoPE key
k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
k_pe = ggml_rope_ext(
ctx0, k_pe, inp_pos, nullptr,
k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor_scaled, beta_fast, beta_slow
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(k_pe, "k_pe", il);
ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
cb(q_states, "q_states", il);
kv_cmpr = build_norm(kv_cmpr,
model.layers[il].attn_kv_a_norm, nullptr,
LLM_NORM_RMS, il);
cb(kv_cmpr, "kv_cmpr", il);
ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
cb(k_states, "k_states", il);
if (is_mla) {
// {n_embd_head_qk_nope, n_tokens, n_head}
q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
cb(q_nope, "q_nope_perm", il);
// {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
cb(q_nope_absorbed, "q_nope_absorbed", il);
// {kv_lora_rank, n_head, n_tokens}
q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
// {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
// note: rope must go first for in-place context shifting in build_rope_shift()
ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
cb(Qcur, "Qcur", il);
kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
cb(kv_cmpr, "kv_cmpr_reshape", il);
// {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
cb(Kcur, "Kcur", il);
// {kv_lora_rank, 1, n_tokens}
ggml_tensor * Vcur = kv_cmpr;
cb(Vcur, "Vcur", il);
// note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
q_states, k_states, v_states, nullptr, kq_scale, il);
Qcur, Kcur, Vcur, nullptr, model.layers[il].wv_b, kq_scale, il);
} else {
ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
cb(kv, "kv", il);
// split into {n_embd_head_qk_nope, n_head, n_tokens}
ggml_tensor * k_nope = ggml_view_3d(ctx0, kv,
n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
0);
cb(k_nope, "k_nope_view", il);
// and {n_embd_head_v, n_head, n_tokens}
ggml_tensor * Vcur = ggml_view_3d(ctx0, kv,
n_embd_head_v, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
ggml_row_size(kv->type, n_embd_head_qk_nope));
cb(Vcur, "Vcur_view", il);
Vcur = ggml_cont(ctx0, Vcur);
cb(Vcur, "Vcur_cont", il);
// note: rope must go first for in-place context shifting in build_rope_shift()
ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
cb(Kcur, "Kcur", il);
// note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
}
}
if (il == n_layer - 1) {
@ -10667,7 +10719,7 @@ struct llm_build_bitnet : public llm_graph_context {
cur = build_attn(inp_attn, gf,
NULL, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
cur = build_norm(cur,
model.layers[il].attn_sub_norm, NULL,
@ -10790,7 +10842,7 @@ struct llm_build_t5_enc : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo_enc, nullptr,
Qcur, Kcur, Vcur, kq_b, 1.0f, il);
Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
cb(cur, "kqv_out", il);
}
@ -10896,7 +10948,7 @@ struct llm_build_t5_dec : public llm_graph_context {
cur = build_attn(inp_attn_self, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, kq_b, 1.0f, il);
Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
cb(cur, "kqv_out", il);
}
@ -10928,7 +10980,7 @@ struct llm_build_t5_dec : public llm_graph_context {
cur = build_attn(inp_attn_cross, gf,
model.layers[il].wo_cross, nullptr,
Qcur, Kcur, Vcur, nullptr, 1.0f, il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
cb(cur, "kqv_out", il);
//ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
@ -11061,7 +11113,7 @@ struct llm_build_jais : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/float(n_embd_head), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/float(n_embd_head), il);
}
if (il == n_layer - 1) {
@ -11193,7 +11245,7 @@ struct llm_build_chatglm : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -11326,7 +11378,7 @@ struct llm_build_glm4 : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -11470,7 +11522,7 @@ struct llm_build_nemotron : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -11601,7 +11653,7 @@ struct llm_build_exaone : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
@ -12503,7 +12555,7 @@ struct llm_build_chameleon : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, nullptr,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
if (hparams.swin_norm) {
cur = build_norm(cur,
@ -12690,7 +12742,7 @@ struct llm_build_solar : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
@ -13018,7 +13070,7 @@ struct llm_build_plm : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
q_states, k_states, v_states, nullptr, kq_scale, il);
q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
}
if (il == n_layer - 1) {
@ -13141,7 +13193,7 @@ struct llm_build_bailingmoe : public llm_graph_context {
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_rot)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
}
if (il == n_layer - 1) {

View file

@ -174,6 +174,8 @@ struct llama_layer {
struct ggml_tensor * wq_b = nullptr;
struct ggml_tensor * wkv_a_mqa = nullptr;
struct ggml_tensor * wkv_b = nullptr;
struct ggml_tensor * wk_b = nullptr;
struct ggml_tensor * wv_b = nullptr;
struct ggml_tensor * wq_cross = nullptr;
struct ggml_tensor * wk_cross = nullptr;
struct ggml_tensor * wv_cross = nullptr;

View file

@ -1833,6 +1833,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
if (false
|| t.first == "<|fim_prefix|>" // Qwen
|| t.first == "<fim-prefix>"
|| t.first == "<fim_prefix>" // Granite
|| t.first == "<fim▁begin>" // DeepSeek
|| t.first == "<PRE>"
|| t.first == "▁<PRE>" // CodeLlama
@ -1851,6 +1852,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
if (false
|| t.first == "<|fim_suffix|>" // Qwen
|| t.first == "<fim-suffix>"
|| t.first == "<fim_suffix>" // Granite
|| t.first == "<fim▁hole>" // DeepSeek
|| t.first == "<SUF>"
|| t.first == "▁<SUF>" // CodeLlama
@ -1869,6 +1871,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
if (false
|| t.first == "<|fim_middle|>" // Qwen
|| t.first == "<fim-middle>"
|| t.first == "<fim_middle>" // Granite
|| t.first == "<fim▁end>" // DeepSeek
|| t.first == "<MID>"
|| t.first == "▁<MID>" // CodeLlama
@ -1887,6 +1890,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
if (false
|| t.first == "<|fim_pad|>" // Qwen
|| t.first == "<fim-pad>"
|| t.first == "<fim_pad>" // Granite
|| t.first == "<PAD>"
) {
special_fim_pad_id = t.second;
@ -1905,6 +1909,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|repo_name|>"
|| t.first == "<fim-repo>"
|| t.first == "<REPO>"
|| t.first == "<reponame>" // Granite
) {
special_fim_rep_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {

View file

@ -65,10 +65,10 @@ index 273075f4..dd11f304 100644
/* .init_tensor = */ NULL, // no initialization required
/* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
diff --git a/ggml/src/ggml-cann/ggml-cann.cpp b/ggml/src/ggml-cann/ggml-cann.cpp
index cec36b36..4b057973 100644
index e2617b06..242e50a7 100644
--- a/ggml/src/ggml-cann/ggml-cann.cpp
+++ b/ggml/src/ggml-cann/ggml-cann.cpp
@@ -530,6 +530,7 @@ static void ggml_backend_cann_buffer_free_buffer(
@@ -800,6 +800,7 @@ static void ggml_backend_cann_buffer_free_buffer(
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
delete ctx;
@ -76,7 +76,7 @@ index cec36b36..4b057973 100644
}
/**
@@ -1199,6 +1200,7 @@ static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buf
@@ -1472,6 +1473,7 @@ static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buf
*/
static void ggml_backend_cann_host_buffer_free(ggml_backend_buffer_t buffer) {
ACL_CHECK(aclrtFreeHost(buffer->context));
@ -85,10 +85,10 @@ index cec36b36..4b057973 100644
/**
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index fafe9633..59a49560 100644
index a7febef7..31750b6f 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -533,6 +533,7 @@ struct ggml_backend_cuda_buffer_context {
@@ -534,6 +534,7 @@ struct ggml_backend_cuda_buffer_context {
static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
delete ctx;
@ -96,7 +96,7 @@ index fafe9633..59a49560 100644
}
static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
@@ -788,6 +789,7 @@ struct ggml_backend_cuda_split_buffer_context {
@@ -789,6 +790,7 @@ struct ggml_backend_cuda_split_buffer_context {
static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
delete ctx;
@ -104,7 +104,7 @@ index fafe9633..59a49560 100644
}
static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
@@ -1061,6 +1063,7 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
@@ -1062,6 +1064,7 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
CUDA_CHECK(cudaFreeHost(buffer->context));
@ -125,10 +125,10 @@ index 50579227..2799a0a5 100644
static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index 9f1c6c6c..310afe8a 100644
index 266d8af4..12886cd3 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -4641,6 +4641,7 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
@@ -4759,6 +4759,7 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
}
free(ctx);
@ -137,10 +137,10 @@ index 9f1c6c6c..310afe8a 100644
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-opencl/ggml-opencl.cpp b/ggml/src/ggml-opencl/ggml-opencl.cpp
index b8b5cbd3..14d4561b 100644
index 05a2f4e6..392cc18d 100644
--- a/ggml/src/ggml-opencl/ggml-opencl.cpp
+++ b/ggml/src/ggml-opencl/ggml-opencl.cpp
@@ -1443,6 +1443,7 @@ struct ggml_backend_opencl_buffer_context {
@@ -1940,6 +1940,7 @@ struct ggml_backend_opencl_buffer_context {
static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
delete ctx;
@ -149,10 +149,10 @@ index b8b5cbd3..14d4561b 100644
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-rpc/ggml-rpc.cpp b/ggml/src/ggml-rpc/ggml-rpc.cpp
index 862b9b66..34536681 100644
index a0667b7d..bd83adc5 100644
--- a/ggml/src/ggml-rpc/ggml-rpc.cpp
+++ b/ggml/src/ggml-rpc/ggml-rpc.cpp
@@ -443,6 +443,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@@ -468,6 +468,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
GGML_ASSERT(status);
delete ctx;
@ -161,7 +161,7 @@ index 862b9b66..34536681 100644
static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp
index 3e48a924..a3d182fc 100644
index 1de34c96..4600f61e 100644
--- a/ggml/src/ggml-sycl/ggml-sycl.cpp
+++ b/ggml/src/ggml-sycl/ggml-sycl.cpp
@@ -316,6 +316,7 @@ ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
@ -189,10 +189,10 @@ index 3e48a924..a3d182fc 100644
static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index 783a0ff8..8ac1e07e 100644
index 39f3cd34..c569a8a5 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -8639,6 +8639,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@@ -8653,6 +8653,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
ggml_vk_destroy_buffer(ctx->dev_buffer);
delete ctx;
@ -200,7 +200,7 @@ index 783a0ff8..8ac1e07e 100644
}
static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
@@ -8782,6 +8783,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
@@ -8796,6 +8797,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
ggml_vk_host_free(vk_instance.devices[0], buffer->context);

View file

@ -10,7 +10,7 @@ logs instead of throwing an error
1 file changed, 3 insertions(+), 11 deletions(-)
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index 464ff01e..0125ee53 100644
index 48060517..a35b498c 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -1491,16 +1491,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {

View file

@ -11,10 +11,10 @@ instead of forcing one or the error
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index 4735e98e..65135172 100644
index 983385f8..32f59819 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -1232,7 +1232,7 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1236,7 +1236,7 @@ int llama_context::decode(llama_batch & inp_batch) {
int64_t n_outputs_all = 0;
// count outputs
@ -23,7 +23,7 @@ index 4735e98e..65135172 100644
for (uint32_t i = 0; i < n_tokens_all; ++i) {
n_outputs_all += batch.logits[i] != 0;
}
@@ -1344,7 +1344,7 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1348,7 +1348,7 @@ int llama_context::decode(llama_batch & inp_batch) {
// ggml_graph_dump_dot(gf, NULL, "llama.dot");
//}
@ -32,7 +32,7 @@ index 4735e98e..65135172 100644
auto * t_embd = cparams.embeddings ? res->get_embd() : nullptr;
if (t_embd && res->get_embd_pooled()) {
@@ -1488,7 +1488,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
@@ -1492,7 +1492,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead

View file

@ -10,12 +10,12 @@ filesystems for paths that include wide characters
1 file changed, 39 insertions(+)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 49c90b75..4b72ea9f 100644
index 75970615..d57b4bd6 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -28,6 +28,19 @@
#include <cinttypes>
@@ -29,6 +29,19 @@
#include <limits>
#include <array>
+#if defined(_WIN32)
+#define WIN32_LEAN_AND_MEAN
@ -33,7 +33,7 @@ index 49c90b75..4b72ea9f 100644
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
//#define CLIP_DEBUG_FUNCTIONS
@@ -1429,7 +1442,29 @@ struct clip_model_loader {
@@ -1430,7 +1443,29 @@ struct clip_model_loader {
{
std::vector<uint8_t> read_buf;
@ -63,7 +63,7 @@ index 49c90b75..4b72ea9f 100644
if (!fin) {
throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
}
@@ -1456,7 +1491,11 @@ struct clip_model_loader {
@@ -1457,7 +1492,11 @@ struct clip_model_loader {
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}

View file

@ -1,6 +1,6 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Tue, 8 Apr 2025 16:03:51 -0700
Date: Sun, 20 Apr 2025 16:11:09 -0700
Subject: [PATCH] solar-pro
adds support for the Solar Pro architecture
@ -15,7 +15,7 @@ adds support for the Solar Pro architecture
7 files changed, 248 insertions(+)
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index a6fddc7f..0b0fedcd 100644
index 62e1480b..f754bc8f 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -68,6 +68,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
@ -31,10 +31,10 @@ index a6fddc7f..0b0fedcd 100644
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
@@ -1478,6 +1480,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
@@ -1482,6 +1484,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
},
},
@ -59,7 +59,7 @@ index a6fddc7f..0b0fedcd 100644
{
LLM_ARCH_WAVTOKENIZER_DEC,
{
@@ -1671,6 +1691,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
@@ -1660,6 +1680,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_FFN_EXP_PROBS_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
// this tensor is loaded for T5, but never used
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
@ -68,7 +68,7 @@ index a6fddc7f..0b0fedcd 100644
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
diff --git a/src/llama-arch.h b/src/llama-arch.h
index 2c2099b3..74aa3dd0 100644
index 98ca00a1..439aaeab 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -72,6 +72,7 @@ enum llm_arch {
@ -84,10 +84,10 @@ index 2c2099b3..74aa3dd0 100644
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
+ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
@@ -340,6 +342,7 @@ enum llm_tensor {
@@ -344,6 +346,7 @@ enum llm_tensor {
LLM_TENSOR_ENC_OUTPUT_NORM,
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
@ -115,10 +115,10 @@ index 90dfe7a7..8a667960 100644
if (il < n_layer) {
return n_swa > 0 && n_swa_pattern > 0 && il % n_swa_pattern < (n_swa_pattern - 1);
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
index 4e0b5719..c3147cbc 100644
index 80fcd65d..6e278945 100644
--- a/src/llama-hparams.h
+++ b/src/llama-hparams.h
@@ -51,6 +51,8 @@ struct llama_hparams {
@@ -55,6 +55,8 @@ struct llama_hparams {
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
@ -127,7 +127,7 @@ index 4e0b5719..c3147cbc 100644
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
@@ -149,6 +151,9 @@ struct llama_hparams {
@@ -153,6 +155,9 @@ struct llama_hparams {
// dimension of the recurrent state embeddings
uint32_t n_embd_v_s() const;
@ -150,10 +150,10 @@ index ea73a8a7..a012aeae 100644
llama_model_loader::llama_model_loader(
const std::string & fname,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index b74dd72c..5fbd0055 100644
index 6b7bfecf..aba42819 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -1372,6 +1372,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -1374,6 +1374,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@ -175,7 +175,7 @@ index b74dd72c..5fbd0055 100644
case LLM_ARCH_WAVTOKENIZER_DEC:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -3701,6 +3716,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -3717,6 +3732,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
@ -210,7 +210,7 @@ index b74dd72c..5fbd0055 100644
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
@@ -12244,6 +12287,165 @@ struct llm_build_chameleon : public llm_graph_context {
@@ -12296,6 +12339,165 @@ struct llm_build_chameleon : public llm_graph_context {
}
};
@ -316,7 +316,7 @@ index b74dd72c..5fbd0055 100644
+
+ cur = build_attn(inp_attn, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Qcur, Kcur, Vcur, nullptr, kq_scale, il);
+ Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
+ cb(cur, "attn_out", il);
+ }
+
@ -376,7 +376,7 @@ index b74dd72c..5fbd0055 100644
struct llm_build_wavtokenizer_dec : public llm_graph_context {
llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
ggml_tensor * cur;
@@ -12993,6 +13195,10 @@ llm_graph_result_ptr llama_model::build_graph(
@@ -13045,6 +13247,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
} break;
@ -387,7 +387,7 @@ index b74dd72c..5fbd0055 100644
case LLM_ARCH_WAVTOKENIZER_DEC:
{
llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
@@ -13139,6 +13345,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
@@ -13191,6 +13397,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:
@ -396,7 +396,7 @@ index b74dd72c..5fbd0055 100644
return LLAMA_ROPE_TYPE_NORM;
diff --git a/src/llama-model.h b/src/llama-model.h
index 0f18dac1..e08d4ae4 100644
index fd82d106..5865d5e9 100644
--- a/src/llama-model.h
+++ b/src/llama-model.h
@@ -62,6 +62,7 @@ enum llm_type {
@ -407,7 +407,7 @@ index 0f18dac1..e08d4ae4 100644
LLM_TYPE_30B,
LLM_TYPE_32B,
LLM_TYPE_34B,
@@ -305,6 +306,8 @@ struct llama_layer {
@@ -307,6 +308,8 @@ struct llama_layer {
struct ggml_tensor * ffn_up_scale = nullptr;
struct ggml_tensor * ffn_down_scale = nullptr;

View file

@ -1,6 +1,6 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Tue, 8 Apr 2025 19:27:12 -0700
Date: Sun, 20 Apr 2025 16:12:36 -0700
Subject: [PATCH] add mllama support
adds support for the llama 3.2 vision architecture
@ -28,7 +28,7 @@ adds support for the llama 3.2 vision architecture
20 files changed, 475 insertions(+), 22 deletions(-)
diff --git a/examples/llava/gemma3-cli.cpp b/examples/llava/gemma3-cli.cpp
index 91a07e2a..13127c7b 100644
index 3d566475..654d1358 100644
--- a/examples/llava/gemma3-cli.cpp
+++ b/examples/llava/gemma3-cli.cpp
@@ -106,7 +106,7 @@ struct decode_embd_batch {
@ -79,10 +79,10 @@ index 03a22cbb..5eb40bcd 100644
LOG_ERR("%s : failed to eval\n", __func__);
return false;
diff --git a/examples/llava/mtmd.cpp b/examples/llava/mtmd.cpp
index 114c274b..a0e649ad 100644
index 3fd5bebc..f0cec596 100644
--- a/examples/llava/mtmd.cpp
+++ b/examples/llava/mtmd.cpp
@@ -213,7 +213,7 @@ struct decode_embd_batch {
@@ -233,7 +233,7 @@ struct decode_embd_batch {
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
@ -91,7 +91,7 @@ index 114c274b..a0e649ad 100644
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
@@ -225,6 +225,7 @@ struct decode_embd_batch {
@@ -245,6 +245,7 @@ struct decode_embd_batch {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
@ -99,9 +99,9 @@ index 114c274b..a0e649ad 100644
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
@@ -291,7 +292,8 @@ int32_t mtmd_helper_eval(mtmd_context * ctx,
@@ -311,7 +312,8 @@ int32_t mtmd_helper_eval(mtmd_context * ctx,
int32_t n_tokens = chunk.tokens_image->n_tokens();
int32_t n_tokens = mtmd_image_tokens_get_n_tokens(chunk.tokens_image.get());
float * embd = mtmd_get_output_embd(ctx);
- decode_embd_batch batch_img(embd, n_tokens, n_past, 0);
+ int n_embd = llama_model_n_embd(llama_get_model(lctx));
@ -158,7 +158,7 @@ index 5657fbf0..f91896e4 100644
LLAMA_API void llama_free(struct llama_context * ctx);
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index 0b0fedcd..c1f78618 100644
index f754bc8f..0568565f 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -6,6 +6,7 @@
@ -174,10 +174,10 @@ index 0b0fedcd..c1f78618 100644
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
+ { LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
@@ -269,6 +271,40 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
@@ -271,6 +273,40 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
@ -218,7 +218,7 @@ index 0b0fedcd..c1f78618 100644
{
LLM_ARCH_DECI,
{
@@ -1692,6 +1728,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
@@ -1681,6 +1717,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
// this tensor is loaded for T5, but never used
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
{LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
@ -234,7 +234,7 @@ index 0b0fedcd..c1f78618 100644
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
diff --git a/src/llama-arch.h b/src/llama-arch.h
index 74aa3dd0..f987844d 100644
index 439aaeab..6a989034 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -11,6 +11,7 @@
@ -250,10 +250,10 @@ index 74aa3dd0..f987844d 100644
LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
+ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
@@ -343,6 +345,14 @@ enum llm_tensor {
@@ -347,6 +349,14 @@ enum llm_tensor {
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
LLM_TENSOR_BSKCN_TV,
@ -297,10 +297,10 @@ index 01d5ca57..8682b0e6 100644
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
}
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index 65135172..afe6f552 100644
index 32f59819..0343ba8a 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -858,7 +858,7 @@ float * llama_context::get_logits_ith(int32_t i) {
@@ -862,7 +862,7 @@ float * llama_context::get_logits_ith(int32_t i) {
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs));
}
@ -309,7 +309,7 @@ index 65135172..afe6f552 100644
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
@@ -979,6 +979,10 @@ void llama_context::set_warmup(bool value) {
@@ -983,6 +983,10 @@ void llama_context::set_warmup(bool value) {
cparams.warmup = value;
}
@ -320,7 +320,7 @@ index 65135172..afe6f552 100644
void llama_context::set_adapter_lora(
llama_adapter_lora * adapter,
float scale) {
@@ -1054,7 +1058,7 @@ int llama_context::encode(llama_batch & inp_batch) {
@@ -1058,7 +1062,7 @@ int llama_context::encode(llama_batch & inp_batch) {
const int64_t n_embd = hparams.n_embd;
@ -329,7 +329,7 @@ index 65135172..afe6f552 100644
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
@@ -1194,10 +1198,9 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1198,10 +1202,9 @@ int llama_context::decode(llama_batch & inp_batch) {
const llama_batch & batch = batch_allocr.batch;
@ -341,7 +341,7 @@ index 65135172..afe6f552 100644
const int64_t n_tokens_all = batch.n_tokens;
const int64_t n_embd = hparams.n_embd;
@@ -1245,7 +1248,7 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1249,7 +1252,7 @@ int llama_context::decode(llama_batch & inp_batch) {
const bool logits_all = n_outputs_all == n_tokens_all;
@ -350,7 +350,7 @@ index 65135172..afe6f552 100644
/* simple_split */ !kv_self->recurrent,
/* logits_all */ logits_all);
@@ -1479,12 +1482,11 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1483,12 +1486,11 @@ int llama_context::decode(llama_batch & inp_batch) {
int32_t llama_context::output_reserve(int32_t n_outputs) {
const auto & hparams = model.hparams;
@ -364,7 +364,7 @@ index 65135172..afe6f552 100644
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead
@@ -1554,7 +1556,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
@@ -1558,7 +1560,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
void llama_context::output_reorder() {
auto & out_ids = sbatch.out_ids;
if (!out_ids.empty()) {
@ -373,7 +373,7 @@ index 65135172..afe6f552 100644
const uint32_t n_embd = model.hparams.n_embd;
GGML_ASSERT((size_t) n_outputs == out_ids.size());
@@ -2061,7 +2063,7 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
@@ -2065,7 +2067,7 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
{
LLAMA_LOG_DEBUG("%s: - writing logits\n", __func__);
@ -382,7 +382,7 @@ index 65135172..afe6f552 100644
io.write(&logits_size, sizeof(logits_size));
@@ -2244,6 +2246,7 @@ llama_context_params llama_context_default_params() {
@@ -2248,6 +2250,7 @@ llama_context_params llama_context_default_params() {
/*.offload_kqv =*/ true,
/*.flash_attn =*/ false,
/*.no_perf =*/ true,
@ -390,7 +390,7 @@ index 65135172..afe6f552 100644
/*.abort_callback =*/ nullptr,
/*.abort_callback_data =*/ nullptr,
};
@@ -2371,6 +2374,10 @@ void llama_set_warmup(llama_context * ctx, bool warmup) {
@@ -2375,6 +2378,10 @@ void llama_set_warmup(llama_context * ctx, bool warmup) {
ctx->set_warmup(warmup);
}
@ -426,7 +426,7 @@ index 30e550f0..85ad91b9 100644
enum llama_pooling_type pooling_type;
diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp
index cd955d63..83f3c5a8 100644
index a85e9728..d740c120 100644
--- a/src/llama-graph.cpp
+++ b/src/llama-graph.cpp
@@ -546,6 +546,12 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
@ -442,7 +442,7 @@ index cd955d63..83f3c5a8 100644
//
// llm_graph_context
//
@@ -1495,6 +1501,25 @@ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
@@ -1506,6 +1512,25 @@ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
}
@ -469,7 +469,7 @@ index cd955d63..83f3c5a8 100644
llm_graph_input_attn_cross * inp,
ggml_cgraph * gf,
diff --git a/src/llama-graph.h b/src/llama-graph.h
index 5b6618f9..51993998 100644
index d192dc14..260a2af2 100644
--- a/src/llama-graph.h
+++ b/src/llama-graph.h
@@ -86,6 +86,7 @@ public:
@ -518,7 +518,7 @@ index 8a667960..6a02de03 100644
+ return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
+}
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
index c3147cbc..4567a0e9 100644
index 6e278945..c8a34d52 100644
--- a/src/llama-hparams.h
+++ b/src/llama-hparams.h
@@ -2,6 +2,8 @@
@ -536,9 +536,9 @@ index c3147cbc..4567a0e9 100644
uint32_t n_rel_attn_bkts = 0;
+ uint32_t n_vocab = 0;
// for WavTokenizer
struct llama_hparams_posnet posnet;
@@ -52,6 +55,7 @@ struct llama_hparams {
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
uint32_t n_embd_head_k_mla = 0;
@@ -56,6 +59,7 @@ struct llama_hparams {
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
@ -546,7 +546,7 @@ index c3147cbc..4567a0e9 100644
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
@@ -154,6 +158,9 @@ struct llama_hparams {
@@ -158,6 +162,9 @@ struct llama_hparams {
// Block skip connection
bool n_bskcn(uint32_t n, uint32_t il) const;
@ -557,7 +557,7 @@ index c3147cbc..4567a0e9 100644
};
diff --git a/src/llama-kv-cache.cpp b/src/llama-kv-cache.cpp
index dbf5f118..9310f262 100644
index 7c9d46d8..69f8d35a 100644
--- a/src/llama-kv-cache.cpp
+++ b/src/llama-kv-cache.cpp
@@ -95,8 +95,16 @@ bool llama_kv_cache_unified::init(
@ -593,7 +593,7 @@ index a012aeae..2e11507d 100644
bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) {
const int kid = gguf_find_key(meta.get(), key.c_str());
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index 5fbd0055..d5ad466e 100644
index aba42819..d051696c 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -419,6 +419,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@ -650,7 +650,7 @@ index 5fbd0055..d5ad466e 100644
case LLM_ARCH_DECI:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -1548,7 +1562,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -1550,7 +1564,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
const int64_t n_embd_head_v = hparams.n_embd_head_v;
const int64_t n_ff = hparams.n_ff();
const int64_t n_embd_gqa = n_embd_v_gqa;
@ -659,7 +659,7 @@ index 5fbd0055..d5ad466e 100644
const int64_t n_token_types = vocab.n_token_types();
const int64_t n_rot = hparams.n_rot;
const int64_t n_expert = hparams.n_expert;
@@ -1801,6 +1815,52 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -1803,6 +1817,52 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
}
} break;
@ -712,7 +712,7 @@ index 5fbd0055..d5ad466e 100644
case LLM_ARCH_DECI:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -4665,6 +4725,246 @@ struct llm_build_llama : public llm_graph_context {
@@ -4683,6 +4743,246 @@ struct llm_build_llama : public llm_graph_context {
}
};
@ -900,7 +900,7 @@ index 5fbd0055..d5ad466e 100644
+
+ cur = build_attn(inp_attn, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+ Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
@ -959,7 +959,7 @@ index 5fbd0055..d5ad466e 100644
struct llm_build_deci : public llm_graph_context {
llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -12965,6 +13265,10 @@ llm_graph_result_ptr llama_model::build_graph(
@@ -13017,6 +13317,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_llama>(*this, params, gf);
} break;
@ -970,7 +970,7 @@ index 5fbd0055..d5ad466e 100644
case LLM_ARCH_DECI:
{
llm = std::make_unique<llm_build_deci>(*this, params, gf);
@@ -13325,6 +13629,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
@@ -13377,6 +13681,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA:
case LLM_ARCH_LLAMA4:
@ -979,7 +979,7 @@ index 5fbd0055..d5ad466e 100644
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER:
diff --git a/src/llama-model.h b/src/llama-model.h
index e08d4ae4..21c4617b 100644
index 5865d5e9..72bab5be 100644
--- a/src/llama-model.h
+++ b/src/llama-model.h
@@ -11,6 +11,7 @@
@ -998,7 +998,7 @@ index e08d4ae4..21c4617b 100644
LLM_TYPE_236B,
LLM_TYPE_314B,
LLM_TYPE_671B,
@@ -308,6 +310,16 @@ struct llama_layer {
@@ -310,6 +312,16 @@ struct llama_layer {
struct ggml_tensor * bskcn_tv = nullptr;

View file

@ -1,25 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Daniel Hiltgen <daniel@ollama.com>
Date: Wed, 9 Oct 2024 17:26:23 -0700
Subject: [PATCH] conditional-fattn
---
ggml/src/ggml-cuda/ggml-cuda.cu | 2 ++
1 file changed, 2 insertions(+)
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index 59a49560..b70c6a32 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -2338,9 +2338,11 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_ARGSORT:
ggml_cuda_op_argsort(ctx, dst);
break;
+#if !defined(GGML_DISABLE_FLASH_ATTN)
case GGML_OP_FLASH_ATTN_EXT:
ggml_cuda_flash_attn_ext(ctx, dst);
break;
+#endif
case GGML_OP_CROSS_ENTROPY_LOSS:
ggml_cuda_cross_entropy_loss(ctx, dst);
break;

View file

@ -147,10 +147,10 @@ index 410a3720..3eca1cf8 100644
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index b70c6a32..67208cba 100644
index 31750b6f..0fef9522 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -2245,6 +2245,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
@@ -2246,6 +2246,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_PAD:
ggml_cuda_op_pad(ctx, dst);
break;
@ -160,7 +160,7 @@ index b70c6a32..67208cba 100644
case GGML_OP_ARANGE:
ggml_cuda_op_arange(ctx, dst);
break;
@@ -3223,6 +3226,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
@@ -3222,6 +3225,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_PAD:
@ -233,7 +233,7 @@ index 8fd386b0..e2ededc3 100644
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index 310afe8a..b121ab9e 100644
index 12886cd3..b2e95a66 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -341,6 +341,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte
@ -244,7 +244,7 @@ index 310afe8a..b121ab9e 100644
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
@@ -998,6 +999,7 @@ @implementation GGMLMetalClass
@@ -1020,6 +1021,7 @@ @implementation GGMLMetalClass
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32, pad_reflect_1d_f32, true);
@ -252,7 +252,7 @@ index 310afe8a..b121ab9e 100644
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
@@ -1339,6 +1341,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
@@ -1384,6 +1386,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_POOL_2D:
case GGML_OP_PAD:
case GGML_OP_PAD_REFLECT_1D:
@ -260,7 +260,7 @@ index 310afe8a..b121ab9e 100644
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT:
case GGML_OP_LEAKY_RELU:
@@ -3669,6 +3672,36 @@ static void ggml_metal_encode_node(
@@ -3731,6 +3734,36 @@ static void ggml_metal_encode_node(
const int nth = MIN(1024, ne0);
@ -298,10 +298,10 @@ index 310afe8a..b121ab9e 100644
} break;
case GGML_OP_ARANGE:
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
index b08666e2..e3185e5b 100644
index 8d6e99e6..71f0f97f 100644
--- a/ggml/src/ggml-metal/ggml-metal.metal
+++ b/ggml/src/ggml-metal/ggml-metal.metal
@@ -2968,6 +2968,51 @@ kernel void kernel_pad_reflect_1d_f32(
@@ -2975,6 +2975,51 @@ kernel void kernel_pad_reflect_1d_f32(
}
}

View file

@ -12,7 +12,7 @@ regex
2 files changed, 22 insertions(+), 1 deletion(-)
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index 0125ee53..d74919d2 100644
index a35b498c..032019c9 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -296,7 +296,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {

View file

@ -22,10 +22,10 @@ multiple batches of processing until everything is complete.
4 files changed, 51 insertions(+), 106 deletions(-)
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index afe6f552..d6e7b3af 100644
index 0343ba8a..4b3e6a83 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -590,13 +590,12 @@ llm_graph_result_ptr llama_context::build_kv_self_shift(
@@ -594,13 +594,12 @@ llm_graph_result_ptr llama_context::build_kv_self_shift(
llm_graph_result_ptr llama_context::build_kv_self_defrag(
ggml_context * ctx0,
@ -41,7 +41,7 @@ index afe6f552..d6e7b3af 100644
#if 0
// CPU defrag
//
@@ -668,32 +667,20 @@ llm_graph_result_ptr llama_context::build_kv_self_defrag(
@@ -672,32 +671,20 @@ llm_graph_result_ptr llama_context::build_kv_self_defrag(
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
}
#else
@ -79,7 +79,7 @@ index afe6f552..d6e7b3af 100644
ggml_tensor * view_v_src;
ggml_tensor * view_v_dst;
@@ -701,34 +688,30 @@ llm_graph_result_ptr llama_context::build_kv_self_defrag(
@@ -705,34 +692,30 @@ llm_graph_result_ptr llama_context::build_kv_self_defrag(
if (cparams.flash_attn) {
// NOTE: the V cache is not transposed when using flash attention
view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
@ -122,7 +122,7 @@ index afe6f552..d6e7b3af 100644
#endif
return res;
@@ -737,8 +720,6 @@ llm_graph_result_ptr llama_context::build_kv_self_defrag(
@@ -741,8 +724,6 @@ llm_graph_result_ptr llama_context::build_kv_self_defrag(
void llama_context::kv_self_update() {
auto & kv = kv_self;
@ -131,7 +131,7 @@ index afe6f552..d6e7b3af 100644
if (kv->has_shift) {
if (!kv->get_can_shift()) {
GGML_ABORT("The current context does not support K-shift");
@@ -759,8 +740,6 @@ void llama_context::kv_self_update() {
@@ -763,8 +744,6 @@ void llama_context::kv_self_update() {
res->set_inputs(nullptr);
graph_compute(gf, false);
@ -140,7 +140,7 @@ index afe6f552..d6e7b3af 100644
}
{
@@ -775,49 +754,28 @@ void llama_context::kv_self_update() {
@@ -779,49 +758,28 @@ void llama_context::kv_self_update() {
// defragment the KV cache if needed
if (kv->do_defrag) {
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
@ -202,7 +202,7 @@ index afe6f552..d6e7b3af 100644
}
enum llama_pooling_type llama_context::pooling_type() const {
@@ -1301,9 +1259,12 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1305,9 +1263,12 @@ int llama_context::decode(llama_batch & inp_batch) {
// find KV slot
{
if (!kv_self->find_slot(ubatch)) {
@ -241,7 +241,7 @@ index baa03276..a59ff8fd 100644
// TODO: read/write lora adapters and cvec
size_t state_write_data(llama_io_write_i & io);
diff --git a/src/llama-kv-cache.cpp b/src/llama-kv-cache.cpp
index 9310f262..5c941e7c 100644
index 69f8d35a..35a750d3 100644
--- a/src/llama-kv-cache.cpp
+++ b/src/llama-kv-cache.cpp
@@ -781,17 +781,7 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {

View file

@ -53,7 +53,7 @@ index 381a9c7d..e45b453d 100644
}
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index d74919d2..c90f636c 100644
index 032019c9..ba37df35 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -1459,7 +1459,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {

View file

@ -13,7 +13,7 @@ models not supported in llama.cpp
4 files changed, 24 insertions(+)
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index c1f78618..bdf3d898 100644
index 0568565f..dd01df60 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -73,6 +73,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
@ -24,7 +24,7 @@ index c1f78618..bdf3d898 100644
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -1582,6 +1583,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
@@ -1586,6 +1587,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
@ -48,7 +48,7 @@ index c1f78618..bdf3d898 100644
LLM_ARCH_UNKNOWN,
{
diff --git a/src/llama-arch.h b/src/llama-arch.h
index f987844d..ee081fbf 100644
index 6a989034..b6227eeb 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -75,6 +75,7 @@ enum llm_arch {
@ -60,10 +60,10 @@ index f987844d..ee081fbf 100644
LLM_ARCH_BAILINGMOE,
LLM_ARCH_UNKNOWN,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index d5ad466e..cd1d239c 100644
index d051696c..c8374159 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -1423,6 +1423,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -1425,6 +1425,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@ -71,7 +71,7 @@ index d5ad466e..cd1d239c 100644
default: throw std::runtime_error("unsupported model architecture");
}
@@ -13652,6 +13653,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
@@ -13704,6 +13705,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_CHAMELEON:
case LLM_ARCH_SOLAR:
case LLM_ARCH_BAILINGMOE:

View file

@ -1,76 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Tue, 8 Apr 2025 20:41:24 -0700
Subject: [PATCH] add op_neg
adds the neg operator to ggml
---
ggml/src/ggml-metal/ggml-metal.m | 15 +++++++++++++++
ggml/src/ggml-metal/ggml-metal.metal | 7 +++++++
2 files changed, 22 insertions(+)
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index b121ab9e..fea50521 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -461,6 +461,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte
GGML_METAL_KERNEL_TYPE_SQRT,
GGML_METAL_KERNEL_TYPE_SIN,
GGML_METAL_KERNEL_TYPE_COS,
+ GGML_METAL_KERNEL_TYPE_NEG,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
@@ -1119,6 +1120,7 @@ @implementation GGMLMetalClass
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
@@ -1280,6 +1282,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_ELU:
+ case GGML_UNARY_OP_NEG:
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
default:
return false;
@@ -1966,6 +1969,18 @@ static void ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
+ case GGML_UNARY_OP_NEG:
+ {
+ id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NEG].pipeline;
+
+ [encoder setComputePipelineState:pipeline];
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
+
+ const int64_t n = ggml_nelements(dst);
+
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
+ } break;
default:
{
GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
index e3185e5b..ede9d1e6 100644
--- a/ggml/src/ggml-metal/ggml-metal.metal
+++ b/ggml/src/ggml-metal/ggml-metal.metal
@@ -949,6 +949,13 @@ kernel void kernel_cos(
dst[tpig] = cos(src0[tpig]);
}
+kernel void kernel_neg(
+ device const float * src0,
+ device float * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = -src0[tpig];
+}
+
kernel void kernel_sum_rows(
device const float * src0,
device float * dst,

View file

@ -1,39 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Tue, 8 Apr 2025 20:49:50 -0700
Subject: [PATCH] fix compiler error in clip.h
fixes an error that occurs in clip.h when compiling
using CGo
---
examples/llava/clip.h | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)
diff --git a/examples/llava/clip.h b/examples/llava/clip.h
index cc133a58..5fc45d3e 100644
--- a/examples/llava/clip.h
+++ b/examples/llava/clip.h
@@ -30,12 +30,13 @@ struct clip_image_size {
int height;
};
+struct clip_image_f32;
struct clip_image_u8_batch;
struct clip_image_f32_batch;
struct clip_context_params {
bool use_gpu;
- ggml_log_level verbosity;
+ enum ggml_log_level verbosity;
};
// deprecated, use clip_init
@@ -84,7 +85,7 @@ CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
CLIP_API size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch); // equivalent to batch->size()
CLIP_API size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->nx
CLIP_API size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->ny
-CLIP_API clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->data
+CLIP_API struct clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->data
/**
* Build image from pixels decoded by other libraries instead of stb_image.h for better performance.

View file

@ -1,600 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Sat, 12 Apr 2025 13:06:57 -0700
Subject: [PATCH] Revert "Simplify and improve CUDA graphs through use of
indirect copy pointers (#9017)"
this commit in llama.cpp causes errors when running llama 3.2
vision - temporarily revert it
This reverts commit 3f9da22c2b21a2cef216de50006436ef1cab8764.
---
ggml/src/ggml-cuda/common.cuh | 8 +-
ggml/src/ggml-cuda/cpy.cu | 149 ++++++++++++--------------------
ggml/src/ggml-cuda/cpy.cuh | 2 -
ggml/src/ggml-cuda/ggml-cuda.cu | 93 +++++++++++++++-----
4 files changed, 124 insertions(+), 128 deletions(-)
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh
index 8284a001..a718b6a1 100644
--- a/ggml/src/ggml-cuda/common.cuh
+++ b/ggml/src/ggml-cuda/common.cuh
@@ -729,13 +729,7 @@ struct ggml_cuda_graph {
bool disable_due_to_failed_graph_capture = false;
int number_consecutive_updates = 0;
std::vector<ggml_graph_node_properties> ggml_graph_properties;
- bool use_cpy_indirection = false;
- std::vector<char *> cpy_dest_ptrs;
- char ** dest_ptrs_d;
- int dest_ptrs_size = 0;
- // Index to allow each cpy kernel to be aware of it's position within the graph
- // relative to other cpy nodes.
- int graph_cpynode_index = -1;
+ std::vector<char **> updated_kernel_arg;
#endif
};
diff --git a/ggml/src/ggml-cuda/cpy.cu b/ggml/src/ggml-cuda/cpy.cu
index 4f4faa3e..8396df28 100644
--- a/ggml/src/ggml-cuda/cpy.cu
+++ b/ggml/src/ggml-cuda/cpy.cu
@@ -39,18 +39,16 @@ static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
}
template <cpy_kernel_t cpy_1>
-static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne,
+static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) {
+ const int nb12, const int nb13) {
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= ne) {
return;
}
- char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct;
-
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
// then combine those indices with the corresponding byte offsets to get the total offsets
const int64_t i03 = i/(ne00 * ne01 * ne02);
@@ -297,18 +295,16 @@ static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
}
template <cpy_kernel_t cpy_blck, int qk>
-static __global__ void cpy_f32_q(const char * cx, char * cdst_direct, const int ne,
+static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) {
+ const int nb12, const int nb13) {
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
if (i >= ne) {
return;
}
- char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct;
-
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
@@ -325,18 +321,16 @@ static __global__ void cpy_f32_q(const char * cx, char * cdst_direct, const int
}
template <cpy_kernel_t cpy_blck, int qk>
-static __global__ void cpy_q_f32(const char * cx, char * cdst_direct, const int ne,
+static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) {
+ const int nb12, const int nb13) {
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
if (i >= ne) {
return;
}
- char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct;
-
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
@@ -352,97 +346,76 @@ static __global__ void cpy_q_f32(const char * cx, char * cdst_direct, const int
cpy_blck(cx + x_offset, cdst + dst_offset);
}
-// Copy destination pointers to GPU to be available when pointer indirection is in use
-
-void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_dest_ptrs, const int host_dest_ptrs_size, cudaStream_t stream) {
-#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS)
- if (cuda_graph->dest_ptrs_size < host_dest_ptrs_size) { // (re-)allocate GPU memory for destination pointers
- CUDA_CHECK(cudaStreamSynchronize(stream));
- if (cuda_graph->dest_ptrs_d != nullptr) {
- CUDA_CHECK(cudaFree(cuda_graph->dest_ptrs_d));
- }
- CUDA_CHECK(cudaMalloc(&cuda_graph->dest_ptrs_d, host_dest_ptrs_size*sizeof(char *)));
- cuda_graph->dest_ptrs_size = host_dest_ptrs_size;
- }
- // copy destination pointers to GPU
- CUDA_CHECK(cudaMemcpyAsync(cuda_graph->dest_ptrs_d, host_dest_ptrs, host_dest_ptrs_size*sizeof(char *), cudaMemcpyHostToDevice, stream));
- cuda_graph->graph_cpynode_index = 0; // reset index
-#else
- GGML_UNUSED(cuda_graph); GGML_UNUSED(host_dest_ptrs);
- GGML_UNUSED(host_dest_ptrs_size); GGML_UNUSED(stream);
-#endif
-}
-
static void ggml_cpy_f16_f32_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_f32_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_bf16_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f32_bf16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_f16_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q8_0_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK8_0 == 0);
const int num_blocks = ne / QK8_0;
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_q8_0_f32_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q8_0_f32, QK8_0><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q4_0_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK4_0 == 0);
const int num_blocks = ne / QK4_0;
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_q4_0_f32_cuda(
@@ -451,22 +424,22 @@ static void ggml_cpy_q4_0_f32_cuda(
const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12, const int nb13,
- cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ cudaStream_t stream) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_0, QK4_0>, QK4_0><<<num_blocks, 1, 0, stream>>>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
- ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q4_1_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK4_1 == 0);
const int num_blocks = ne / QK4_1;
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_q4_1_f32_cuda(
@@ -475,22 +448,22 @@ static void ggml_cpy_q4_1_f32_cuda(
const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12, const int nb13,
- cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ cudaStream_t stream) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_1, QK4_1>, QK4_1><<<num_blocks, 1, 0, stream>>>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
- ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q5_0_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK5_0 == 0);
const int num_blocks = ne / QK5_0;
cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_q5_0_f32_cuda(
@@ -499,22 +472,22 @@ static void ggml_cpy_q5_0_f32_cuda(
const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12, const int nb13,
- cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ cudaStream_t stream) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_0, QK5_0>, QK5_0><<<num_blocks, 1, 0, stream>>>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
- ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q5_1_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK5_1 == 0);
const int num_blocks = ne / QK5_1;
cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_q5_1_f32_cuda(
@@ -523,32 +496,32 @@ static void ggml_cpy_q5_1_f32_cuda(
const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12, const int nb13,
- cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ cudaStream_t stream) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_1, QK5_1>, QK5_1><<<num_blocks, 1, 0, stream>>>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
- ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_iq4_nl_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK4_NL == 0);
const int num_blocks = ne / QK4_NL;
cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f16_f16_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
@@ -585,62 +558,48 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
char * src0_ddc = (char *) src0->data;
char * src1_ddc = (char *) src1->data;
- char ** dest_ptrs_d = nullptr;
- int graph_cpynode_index = -1;
-#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS)
- if(ctx.cuda_graph->use_cpy_indirection) {
- dest_ptrs_d = ctx.cuda_graph->dest_ptrs_d;
- graph_cpynode_index = ctx.cuda_graph->graph_cpynode_index;
- }
-#endif
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1));
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
- ggml_cpy_f32_bf16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_f32_bf16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
- ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
- ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q4_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
- nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
- ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q4_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
- nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
- ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q5_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
- nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
- ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
- ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
+ ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else {
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
}
-#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS)
- if(ctx.cuda_graph->use_cpy_indirection) {
- ctx.cuda_graph->graph_cpynode_index = graph_cpynode_index;
- }
-#endif
-
}
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
diff --git a/ggml/src/ggml-cuda/cpy.cuh b/ggml/src/ggml-cuda/cpy.cuh
index 6bed0564..28b06cdd 100644
--- a/ggml/src/ggml-cuda/cpy.cuh
+++ b/ggml/src/ggml-cuda/cpy.cuh
@@ -7,5 +7,3 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1);
-
-void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_dest_ptrs, const int host_dest_ptrs_size, cudaStream_t stream);
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index 67208cba..a44788db 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -2477,11 +2477,10 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
#ifdef USE_CUDA_GRAPH
static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
- bool use_cuda_graph) {
+ std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool use_cuda_graph) {
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
- cuda_ctx->cuda_graph->cpy_dest_ptrs.clear();
-
+ cuda_ctx->cuda_graph->updated_kernel_arg.clear();
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@@ -2513,11 +2512,8 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
}
if (node->op == GGML_OP_CPY) {
-
- // Store the pointers which are updated for each token, such that these can be sent
- // to the device and accessed using indirection from CUDA graph
- cuda_ctx->cuda_graph->cpy_dest_ptrs.push_back((char *) node->src[1]->data);
-
+ // store the copy op parameter which changes with each token.
+ cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
// store a pointer to each copy op CUDA kernel to identify it later
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
if (!ptr) {
@@ -2525,6 +2521,10 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
#endif
+ } else {
+ if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
+ ggml_cuda_cpy_fn_ptrs.push_back(ptr);
+ }
}
}
@@ -2533,12 +2533,6 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
}
}
- if (use_cuda_graph) {
- cuda_ctx->cuda_graph->use_cpy_indirection = true;
- // copy pointers to GPU so they can be accessed via indirection within CUDA graph
- ggml_cuda_cpy_dest_ptrs_copy(cuda_ctx->cuda_graph.get(), cuda_ctx->cuda_graph->cpy_dest_ptrs.data(), cuda_ctx->cuda_graph->cpy_dest_ptrs.size(), cuda_ctx->stream());
- }
-
return use_cuda_graph;
}
@@ -2593,6 +2587,51 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
return true;
}
+static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool cuda_graph_update_required) {
+
+ if (cuda_graph_update_required) {
+ // Extract nodes from graph
+ // First call with null argument gets number of nodes in graph
+ CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
+ // Subsequent call with non-null argument gets nodes
+ cuda_ctx->cuda_graph->nodes.clear();
+ cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
+ cuda_ctx->cuda_graph->params.clear();
+ cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
+ if (cuda_ctx->cuda_graph->num_nodes > 0) {
+ CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
+
+ // Loop over nodes, and extract kernel parameters from each node
+ for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
+ cudaGraphNodeType node_type;
+ CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
+ if (node_type == cudaGraphNodeTypeKernel) {
+ cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
+ if (stat == cudaErrorInvalidDeviceFunction) {
+ // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
+ // We don't need to update blas nodes, so clear error and move on.
+ (void)cudaGetLastError();
+ } else {
+ GGML_ASSERT(stat == cudaSuccess);
+ }
+ }
+ }
+ }
+ } else {
+ // One of the arguments to the copy kernel is updated for each token, hence we need to
+ // replace that argument with the updated value in the CUDA graph
+ // on update steps, the live parameters will already be captured
+ int k = 0;
+ for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
+ if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
+ char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
+ *(void**)cuda_ctx->cuda_graph->params[i].kernelParams[1] = *(void**)updated_kernel_arg_ptr;
+ CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
+ }
+ }
+ }
+}
+
static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
bool cuda_graph_update_required = false;
@@ -2652,7 +2691,8 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
#endif
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
- bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
+ [[maybe_unused]] std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool & graph_evaluated_or_captured, bool & use_cuda_graph,
+ bool & cuda_graph_update_required) {
while (!graph_evaluated_or_captured) {
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
@@ -2702,9 +2742,13 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
}
- if (cuda_graph_update_required) { // Update graph executable
- update_cuda_graph_executable(cuda_ctx);
- }
+
+ // Perform update to graph (if required for this token), and change copy parameter (required for every token)
+ maintain_cuda_graph(cuda_ctx, ggml_cuda_cpy_fn_ptrs, cuda_graph_update_required);
+
+ // Update graph executable
+ update_cuda_graph_executable(cuda_ctx);
+
// Launch graph
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
#else
@@ -2718,6 +2762,10 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
ggml_cuda_set_device(cuda_ctx->device);
+ // vector of pointers to CUDA cpy kernels, which are required to identify
+ // kernel parameters which need updated in the graph for each token
+ std::vector<void *> ggml_cuda_cpy_fn_ptrs;
+
#ifdef USE_CUDA_GRAPH
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
@@ -2751,7 +2799,8 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
if (use_cuda_graph) {
cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
- use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph, use_cuda_graph);
+ use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph,
+ ggml_cuda_cpy_fn_ptrs, use_cuda_graph);
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
if (use_cuda_graph && cuda_graph_update_required) {
@@ -2772,10 +2821,6 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
- if (!use_cuda_graph) {
- cuda_ctx->cuda_graph->use_cpy_indirection = false;
- }
-
#else
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
@@ -2783,7 +2828,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
bool graph_evaluated_or_captured = false;
- evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
+ evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, ggml_cuda_cpy_fn_ptrs, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
return GGML_STATUS_SUCCESS;
}

View file

@ -7,6 +7,9 @@
extern "C" {
#endif
#define RPC_PROTO_MAJOR_VERSION 1
#define RPC_PROTO_MINOR_VERSION 0
#define RPC_PROTO_PATCH_VERSION 0
#define GGML_RPC_MAX_SERVERS 16
// backend API

File diff suppressed because it is too large Load diff

View file

@ -425,6 +425,8 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
}
case GGML_OP_IM2COL_BACK:
return src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32;
case GGML_OP_GET_ROWS_BACK:
return src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16;
case GGML_OP_OUT_PROD:
return (src0->type == GGML_TYPE_F32 || (ggml_is_quantized(src0->type) && src0->ne[2] == src1->ne[2] && src0->ne[3] == src1->ne[3])) &&
src1->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;

View file

@ -729,7 +729,13 @@ struct ggml_cuda_graph {
bool disable_due_to_failed_graph_capture = false;
int number_consecutive_updates = 0;
std::vector<ggml_graph_node_properties> ggml_graph_properties;
std::vector<char **> updated_kernel_arg;
bool use_cpy_indirection = false;
std::vector<char *> cpy_dest_ptrs;
char ** dest_ptrs_d;
int dest_ptrs_size = 0;
// Index to allow each cpy kernel to be aware of it's position within the graph
// relative to other cpy nodes.
int graph_cpynode_index = -1;
#endif
};

View file

@ -39,16 +39,18 @@ static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
}
template <cpy_kernel_t cpy_1>
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13) {
const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) {
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= ne) {
return;
}
char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct;
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
// then combine those indices with the corresponding byte offsets to get the total offsets
const int64_t i03 = i/(ne00 * ne01 * ne02);
@ -295,16 +297,18 @@ static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
}
template <cpy_kernel_t cpy_blck, int qk>
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
static __global__ void cpy_f32_q(const char * cx, char * cdst_direct, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13) {
const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) {
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
if (i >= ne) {
return;
}
char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct;
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
@ -321,16 +325,18 @@ static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
}
template <cpy_kernel_t cpy_blck, int qk>
static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne,
static __global__ void cpy_q_f32(const char * cx, char * cdst_direct, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13) {
const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) {
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
if (i >= ne) {
return;
}
char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct;
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
@ -346,76 +352,97 @@ static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne,
cpy_blck(cx + x_offset, cdst + dst_offset);
}
// Copy destination pointers to GPU to be available when pointer indirection is in use
void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_dest_ptrs, const int host_dest_ptrs_size, cudaStream_t stream) {
#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS)
if (cuda_graph->dest_ptrs_size < host_dest_ptrs_size) { // (re-)allocate GPU memory for destination pointers
CUDA_CHECK(cudaStreamSynchronize(stream));
if (cuda_graph->dest_ptrs_d != nullptr) {
CUDA_CHECK(cudaFree(cuda_graph->dest_ptrs_d));
}
CUDA_CHECK(cudaMalloc(&cuda_graph->dest_ptrs_d, host_dest_ptrs_size*sizeof(char *)));
cuda_graph->dest_ptrs_size = host_dest_ptrs_size;
}
// copy destination pointers to GPU
CUDA_CHECK(cudaMemcpyAsync(cuda_graph->dest_ptrs_d, host_dest_ptrs, host_dest_ptrs_size*sizeof(char *), cudaMemcpyHostToDevice, stream));
cuda_graph->graph_cpynode_index = 0; // reset index
#else
GGML_UNUSED(cuda_graph); GGML_UNUSED(host_dest_ptrs);
GGML_UNUSED(host_dest_ptrs_size); GGML_UNUSED(stream);
#endif
}
static void ggml_cpy_f16_f32_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_f32_f32_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_f32_bf16_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f32_bf16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_f32_f16_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_f32_q8_0_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
GGML_ASSERT(ne % QK8_0 == 0);
const int num_blocks = ne / QK8_0;
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_q8_0_f32_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q8_0_f32, QK8_0><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_f32_q4_0_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
GGML_ASSERT(ne % QK4_0 == 0);
const int num_blocks = ne / QK4_0;
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_q4_0_f32_cuda(
@ -424,22 +451,22 @@ static void ggml_cpy_q4_0_f32_cuda(
const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12, const int nb13,
cudaStream_t stream) {
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_0, QK4_0>, QK4_0><<<num_blocks, 1, 0, stream>>>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_f32_q4_1_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
GGML_ASSERT(ne % QK4_1 == 0);
const int num_blocks = ne / QK4_1;
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_q4_1_f32_cuda(
@ -448,22 +475,22 @@ static void ggml_cpy_q4_1_f32_cuda(
const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12, const int nb13,
cudaStream_t stream) {
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_1, QK4_1>, QK4_1><<<num_blocks, 1, 0, stream>>>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_f32_q5_0_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
GGML_ASSERT(ne % QK5_0 == 0);
const int num_blocks = ne / QK5_0;
cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_q5_0_f32_cuda(
@ -472,22 +499,22 @@ static void ggml_cpy_q5_0_f32_cuda(
const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12, const int nb13,
cudaStream_t stream) {
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_0, QK5_0>, QK5_0><<<num_blocks, 1, 0, stream>>>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_f32_q5_1_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
GGML_ASSERT(ne % QK5_1 == 0);
const int num_blocks = ne / QK5_1;
cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_q5_1_f32_cuda(
@ -496,35 +523,35 @@ static void ggml_cpy_q5_1_f32_cuda(
const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12, const int nb13,
cudaStream_t stream) {
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_1, QK5_1>, QK5_1><<<num_blocks, 1, 0, stream>>>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_f32_iq4_nl_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
GGML_ASSERT(ne % QK4_NL == 0);
const int num_blocks = ne / QK4_NL;
cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_f16_f16_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1, bool disable_indirection_for_this_node) {
const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1));
@ -558,53 +585,68 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
char * src0_ddc = (char *) src0->data;
char * src1_ddc = (char *) src1->data;
char ** dest_ptrs_d = nullptr;
int graph_cpynode_index = -1;
#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS)
if(ctx.cuda_graph->use_cpy_indirection && !disable_indirection_for_this_node) {
dest_ptrs_d = ctx.cuda_graph->dest_ptrs_d;
graph_cpynode_index = ctx.cuda_graph->graph_cpynode_index;
}
#endif
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1));
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
ggml_cpy_f32_bf16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_f32_bf16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q4_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q4_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q5_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else {
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
}
#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS)
if(ctx.cuda_graph->use_cpy_indirection && !disable_indirection_for_this_node) {
ctx.cuda_graph->graph_cpynode_index = graph_cpynode_index;
}
#endif
}
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
ggml_cuda_cpy(ctx, src0, dst);
bool disable_indirection = true;
ggml_cuda_cpy(ctx, src0, dst, disable_indirection);
}
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {

View file

@ -2,8 +2,10 @@
#define CUDA_CPY_BLOCK_SIZE 64
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1);
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1, bool disable_indirection = false);
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1);
void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_dest_ptrs, const int host_dest_ptrs_size, cudaStream_t stream);

View file

@ -96,31 +96,32 @@ int ggml_cuda_get_device() {
static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
ggml_cuda_set_device(device);
#if defined(GGML_USE_HIP) && defined(GGML_HIP_UMA)
auto res = hipMallocManaged(ptr, size);
if (res == hipSuccess) {
// if error we "need" to know why...
CUDA_CHECK(hipMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device));
}
return res;
#else
#if !defined(GGML_USE_HIP)
cudaError_t err;
if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr)
{
err = cudaMallocManaged(ptr, size);
#if defined(GGML_USE_HIP)
if (err == hipSuccess) {
CUDA_CHECK(cudaMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device));
}
// fall back to cudaMalloc if not supported (e.g. on Windows)
if (err == hipErrorNotSupported) {
static bool warned_unsupported = false;
if (!warned_unsupported) {
GGML_LOG_WARN("hipMallocManaged unsupported, falling back to hipMalloc.\n");
warned_unsupported = true;
}
err = cudaMalloc(ptr, size);
}
#endif // defined(GGML_USE_HIP)
}
else
{
err = cudaMalloc(ptr, size);
}
return err;
#else
return cudaMalloc(ptr, size);
#endif // !defined(GGML_USE_HIP)
#endif
}
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
@ -2341,11 +2342,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_ARGSORT:
ggml_cuda_op_argsort(ctx, dst);
break;
#if !defined(GGML_DISABLE_FLASH_ATTN)
case GGML_OP_FLASH_ATTN_EXT:
ggml_cuda_flash_attn_ext(ctx, dst);
break;
#endif
case GGML_OP_CROSS_ENTROPY_LOSS:
ggml_cuda_cross_entropy_loss(ctx, dst);
break;
@ -2477,10 +2476,11 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
#ifdef USE_CUDA_GRAPH
static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool use_cuda_graph) {
bool use_cuda_graph) {
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
cuda_ctx->cuda_graph->updated_kernel_arg.clear();
cuda_ctx->cuda_graph->cpy_dest_ptrs.clear();
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@ -2498,7 +2498,7 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
if (node->op == GGML_OP_MUL_MAT_ID) {
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported node type\n", __func__);
#endif
}
@ -2512,8 +2512,11 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
}
if (node->op == GGML_OP_CPY) {
// store the copy op parameter which changes with each token.
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
// Store the pointers which are updated for each token, such that these can be sent
// to the device and accessed using indirection from CUDA graph
cuda_ctx->cuda_graph->cpy_dest_ptrs.push_back((char *) node->src[1]->data);
// store a pointer to each copy op CUDA kernel to identify it later
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
if (!ptr) {
@ -2521,10 +2524,6 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
#endif
} else {
if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
ggml_cuda_cpy_fn_ptrs.push_back(ptr);
}
}
}
@ -2533,6 +2532,12 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
}
}
if (use_cuda_graph) {
cuda_ctx->cuda_graph->use_cpy_indirection = true;
// copy pointers to GPU so they can be accessed via indirection within CUDA graph
ggml_cuda_cpy_dest_ptrs_copy(cuda_ctx->cuda_graph.get(), cuda_ctx->cuda_graph->cpy_dest_ptrs.data(), cuda_ctx->cuda_graph->cpy_dest_ptrs.size(), cuda_ctx->stream());
}
return use_cuda_graph;
}
@ -2587,51 +2592,6 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
return true;
}
static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool cuda_graph_update_required) {
if (cuda_graph_update_required) {
// Extract nodes from graph
// First call with null argument gets number of nodes in graph
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
// Subsequent call with non-null argument gets nodes
cuda_ctx->cuda_graph->nodes.clear();
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
cuda_ctx->cuda_graph->params.clear();
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
if (cuda_ctx->cuda_graph->num_nodes > 0) {
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
// Loop over nodes, and extract kernel parameters from each node
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
cudaGraphNodeType node_type;
CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
if (node_type == cudaGraphNodeTypeKernel) {
cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
if (stat == cudaErrorInvalidDeviceFunction) {
// Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
// We don't need to update blas nodes, so clear error and move on.
(void)cudaGetLastError();
} else {
GGML_ASSERT(stat == cudaSuccess);
}
}
}
}
} else {
// One of the arguments to the copy kernel is updated for each token, hence we need to
// replace that argument with the updated value in the CUDA graph
// on update steps, the live parameters will already be captured
int k = 0;
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
*(void**)cuda_ctx->cuda_graph->params[i].kernelParams[1] = *(void**)updated_kernel_arg_ptr;
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
}
}
}
}
static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
bool cuda_graph_update_required = false;
@ -2691,8 +2651,7 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
#endif
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
[[maybe_unused]] std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool & graph_evaluated_or_captured, bool & use_cuda_graph,
bool & cuda_graph_update_required) {
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
while (!graph_evaluated_or_captured) {
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
@ -2742,13 +2701,9 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
}
// Perform update to graph (if required for this token), and change copy parameter (required for every token)
maintain_cuda_graph(cuda_ctx, ggml_cuda_cpy_fn_ptrs, cuda_graph_update_required);
// Update graph executable
if (cuda_graph_update_required) { // Update graph executable
update_cuda_graph_executable(cuda_ctx);
}
// Launch graph
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
#else
@ -2762,10 +2717,6 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
ggml_cuda_set_device(cuda_ctx->device);
// vector of pointers to CUDA cpy kernels, which are required to identify
// kernel parameters which need updated in the graph for each token
std::vector<void *> ggml_cuda_cpy_fn_ptrs;
#ifdef USE_CUDA_GRAPH
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
@ -2799,8 +2750,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
if (use_cuda_graph) {
cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph,
ggml_cuda_cpy_fn_ptrs, use_cuda_graph);
use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph, use_cuda_graph);
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
if (use_cuda_graph && cuda_graph_update_required) {
@ -2821,6 +2771,10 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
if (!use_cuda_graph) {
cuda_ctx->cuda_graph->use_cpy_indirection = false;
}
#else
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
@ -2828,7 +2782,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
bool graph_evaluated_or_captured = false;
evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, ggml_cuda_cpy_fn_ptrs, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
return GGML_STATUS_SUCCESS;
}
@ -3290,6 +3244,10 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
if (op->src[0]->ne[0] == 192) {
return false;
}
if (op->src[0]->ne[0] == 576) {
// DeepSeek MLA
return false;
}
if (op->src[0]->ne[3] != 1) {
return false;
}

View file

@ -71,6 +71,8 @@
#define cudaLaunchHostFunc hipLaunchHostFunc
#define cudaMalloc hipMalloc
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
#define cudaMallocManaged hipMallocManaged
#define cudaMemAdvise hipMemAdvise
#define cudaMemcpy hipMemcpy
#define cudaMemcpyAsync hipMemcpyAsync
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync

View file

@ -89,10 +89,6 @@ endif()
add_compile_definitions(GGML_USE_HIP)
if (GGML_HIP_UMA)
add_compile_definitions(GGML_HIP_UMA)
endif()
if (GGML_CUDA_FORCE_MMQ)
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
endif()

View file

@ -6051,6 +6051,7 @@ template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_f16_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 192, 192>;
template [[host_name("kernel_flash_attn_ext_f16_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 192, 128>;
template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 256, 256>;
template [[host_name("kernel_flash_attn_ext_f16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 576, 512>;
#if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_flash_attn_ext_bf16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 64, 64>;
@ -6061,6 +6062,7 @@ template [[host_name("kernel_flash_attn_ext_bf16_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_bf16_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 192>;
template [[host_name("kernel_flash_attn_ext_bf16_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 128>;
template [[host_name("kernel_flash_attn_ext_bf16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 256, 256>;
template [[host_name("kernel_flash_attn_ext_bf16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 576, 512>;
#endif
template [[host_name("kernel_flash_attn_ext_q4_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 64, 64>;
@ -6071,6 +6073,7 @@ template [[host_name("kernel_flash_attn_ext_q4_0_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q4_0_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q4_0_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q4_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q4_0_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q4_1_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q4_1_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 80, 80>;
@ -6080,6 +6083,7 @@ template [[host_name("kernel_flash_attn_ext_q4_1_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q4_1_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q4_1_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q4_1_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q4_1_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q5_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q5_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 80, 80>;
@ -6089,6 +6093,7 @@ template [[host_name("kernel_flash_attn_ext_q5_0_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q5_0_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q5_0_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q5_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q5_0_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q5_1_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q5_1_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 80, 80>;
@ -6098,6 +6103,7 @@ template [[host_name("kernel_flash_attn_ext_q5_1_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q5_1_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q5_1_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q5_1_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q5_1_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q8_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q8_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 80, 80>;
@ -6107,6 +6113,7 @@ template [[host_name("kernel_flash_attn_ext_q8_0_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q8_0_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q8_0_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q8_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q8_0_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 576, 512>;
#undef FA_TYPES
@ -6464,6 +6471,16 @@ kernel void kernel_flash_attn_ext_vec(
typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>) flash_attn_ext_vec_t;
template [[host_name("kernel_flash_attn_ext_vec_f16_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 96, 96, 4>;
#if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 96, 96, 4>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>;
#if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 128, 128, 4>;
@ -6504,6 +6521,16 @@ template [[host_name("kernel_flash_attn_ext_vec_q5_0_h256")]] kernel flash_attn_
template [[host_name("kernel_flash_attn_ext_vec_q5_1_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 256, 256, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 256, 256, 4>;
template [[host_name("kernel_flash_attn_ext_vec_f16_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 576, 512, 2>;
#if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 576, 512, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 576, 512, 2>;
#undef FA_TYPES
template<typename T>

View file

@ -355,6 +355,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H192,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK192_HV128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96,
@ -363,6 +364,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H192,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK192_HV128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96,
@ -371,6 +373,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H192,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK192_HV128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96,
@ -379,6 +382,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H192,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK192_HV128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96,
@ -387,6 +391,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H192,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK192_HV128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96,
@ -395,6 +400,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H192,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK192_HV128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96,
@ -403,6 +409,14 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H192,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H96,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H96,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H96,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H96,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H96,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H96,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128,
@ -431,6 +445,13 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_HK576_HV512,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK576_HV512,
GGML_METAL_KERNEL_TYPE_SET_I32,
GGML_METAL_KERNEL_TYPE_SET_F32,
GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
@ -1014,6 +1035,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H192, flash_attn_ext_f16_h192, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK192_HV128, flash_attn_ext_f16_hk192_hv128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK576_HV512, flash_attn_ext_f16_hk576_hv512, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64, flash_attn_ext_bf16_h64, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80, flash_attn_ext_bf16_h80, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96, flash_attn_ext_bf16_h96, has_simdgroup_mm && use_bfloat);
@ -1022,6 +1044,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H192, flash_attn_ext_bf16_h192, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK192_HV128, flash_attn_ext_bf16_hk192_hv128, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256, flash_attn_ext_bf16_h256, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK576_HV512, flash_attn_ext_bf16_hk576_hv512, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64, flash_attn_ext_q4_0_h64, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80, flash_attn_ext_q4_0_h80, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96, flash_attn_ext_q4_0_h96, has_simdgroup_mm);
@ -1030,6 +1053,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H192, flash_attn_ext_q4_0_h192, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK192_HV128, flash_attn_ext_q4_0_hk192_hv128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H256, flash_attn_ext_q4_0_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK576_HV512, flash_attn_ext_q4_0_hk576_hv512, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64, flash_attn_ext_q4_1_h64, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80, flash_attn_ext_q4_1_h80, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96, flash_attn_ext_q4_1_h96, has_simdgroup_mm);
@ -1038,6 +1062,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H192, flash_attn_ext_q4_1_h192, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK192_HV128, flash_attn_ext_q4_1_hk192_hv128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H256, flash_attn_ext_q4_1_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK576_HV512, flash_attn_ext_q4_1_hk576_hv512, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64, flash_attn_ext_q5_0_h64, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80, flash_attn_ext_q5_0_h80, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96, flash_attn_ext_q5_0_h96, has_simdgroup_mm);
@ -1046,6 +1071,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H192, flash_attn_ext_q5_0_h192, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK192_HV128, flash_attn_ext_q5_0_hk192_hv128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H256, flash_attn_ext_q5_0_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK576_HV512, flash_attn_ext_q5_0_hk576_hv512, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64, flash_attn_ext_q5_1_h64, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80, flash_attn_ext_q5_1_h80, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96, flash_attn_ext_q5_1_h96, has_simdgroup_mm);
@ -1054,6 +1080,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H192, flash_attn_ext_q5_1_h192, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK192_HV128, flash_attn_ext_q5_1_hk192_hv128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H256, flash_attn_ext_q5_1_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK576_HV512, flash_attn_ext_q5_1_hk576_hv512, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64, flash_attn_ext_q8_0_h64, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80, flash_attn_ext_q8_0_h80, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96, flash_attn_ext_q8_0_h96, has_simdgroup_mm);
@ -1062,6 +1089,14 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H192, flash_attn_ext_q8_0_h192, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128, flash_attn_ext_q8_0_hk192_hv128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, flash_attn_ext_q8_0_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512, flash_attn_ext_q8_0_hk576_hv512, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96, flash_attn_ext_vec_f16_h96, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H96, flash_attn_ext_vec_bf16_h96, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H96, flash_attn_ext_vec_q4_0_h96, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H96, flash_attn_ext_vec_q4_1_h96, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H96, flash_attn_ext_vec_q5_0_h96, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H96, flash_attn_ext_vec_q5_1_h96, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H96, flash_attn_ext_vec_q8_0_h96, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128, flash_attn_ext_vec_bf16_h128, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128, flash_attn_ext_vec_q4_0_h128, has_simdgroup_reduction);
@ -1090,6 +1125,13 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256, flash_attn_ext_vec_q5_0_h256, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H256, flash_attn_ext_vec_q5_1_h256, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256, flash_attn_ext_vec_q8_0_h256, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK576_HV512, flash_attn_ext_vec_f16_hk576_hv512, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_HK576_HV512, flash_attn_ext_vec_bf16_hk576_hv512, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_HK576_HV512, flash_attn_ext_vec_q4_0_hk576_hv512, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_HK576_HV512, flash_attn_ext_vec_q4_1_hk576_hv512, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_HK576_HV512, flash_attn_ext_vec_q5_0_hk576_hv512, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_HK576_HV512, flash_attn_ext_vec_q5_1_hk576_hv512, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK576_HV512, flash_attn_ext_vec_q8_0_hk576_hv512, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_F32, set_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_I32, set_i32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true);
@ -1357,6 +1399,11 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
// TODO: not sure if it is worth adding kernels for this size
return false;
}
if (op->src[0]->ne[0] == 576) {
// DeepSeek sizes
// TODO: disabled for now, until optmized
return false;
}
if (op->src[1]->type != op->src[2]->type) {
return false;
}
@ -3891,12 +3938,14 @@ static void ggml_metal_encode_node(
// TODO: add vec kernels for (ne00%64 == 0) and maybe also for (ne00%32 == 0)
// for now avoiding mainly to keep the number of templates/kernels a bit lower
// these are now trivial to add after: https://github.com/ggml-org/llama.cpp/pull/12612
if (ne01 >= 4 || (ne00%128 != 0 && ne00 != 192)) {
if (ne01 >= 4 || (ne00%128 != 0 && ne00 != 96 && ne00 != 192 && ne00 != 576)) {
switch (src1->type) {
case GGML_TYPE_F16:
{
if (ne00 == 192 && ne20 == 128) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK192_HV128].pipeline;
} else if (ne00 == 576 && ne20 == 512) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK576_HV512].pipeline;
} else {
switch (ne00) {
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64 ].pipeline; break;
@ -3919,6 +3968,8 @@ static void ggml_metal_encode_node(
{
if (ne00 == 192 && ne20 == 128) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK192_HV128].pipeline;
} else if (ne00 == 576 && ne20 == 512) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK576_HV512].pipeline;
} else {
switch (ne00) {
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64 ].pipeline; break;
@ -3941,6 +3992,8 @@ static void ggml_metal_encode_node(
{
if (ne00 == 192 && ne20 == 128) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK192_HV128].pipeline;
} else if (ne00 == 576 && ne20 == 512) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK576_HV512].pipeline;
} else {
switch (ne00) {
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64 ].pipeline; break;
@ -3963,6 +4016,8 @@ static void ggml_metal_encode_node(
{
if (ne00 == 192 && ne20 == 128) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK192_HV128].pipeline;
} else if (ne00 == 576 && ne20 == 512) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK576_HV512].pipeline;
} else {
switch (ne00) {
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64 ].pipeline; break;
@ -3985,6 +4040,8 @@ static void ggml_metal_encode_node(
{
if (ne00 == 192 && ne20 == 128) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK192_HV128].pipeline;
} else if (ne00 == 576 && ne20 == 512) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK576_HV512].pipeline;
} else {
switch (ne00) {
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64 ].pipeline; break;
@ -4007,6 +4064,8 @@ static void ggml_metal_encode_node(
{
if (ne00 == 192 && ne20 == 128) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK192_HV128].pipeline;
} else if (ne00 == 576 && ne20 == 512) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK576_HV512].pipeline;
} else {
switch (ne00) {
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64 ].pipeline; break;
@ -4029,6 +4088,8 @@ static void ggml_metal_encode_node(
{
if (ne00 == 192 && ne20 == 128) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128].pipeline;
} else if (ne00 == 576 && ne20 == 512) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512].pipeline;
} else {
switch (ne00) {
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64 ].pipeline; break;
@ -4058,6 +4119,24 @@ static void ggml_metal_encode_node(
use_vec_kernel = true;
switch (ne00) {
case 96:
{
switch (src1->type) {
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96].pipeline; break;
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H96].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H96].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H96].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H96].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H96].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H96].pipeline; break;
default:
{
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
GGML_LOG_ERROR("add template specialization for this type\n");
GGML_ABORT("add template specialization for this type");
}
}
} break;
case 128:
{
switch (src1->type) {
@ -4130,6 +4209,30 @@ static void ggml_metal_encode_node(
}
}
} break;
case 576:
{
if (ne20 == 512) {
switch (src1->type) {
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK576_HV512].pipeline; break;
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_HK576_HV512].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_HK576_HV512].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_HK576_HV512].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_HK576_HV512].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_HK576_HV512].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK576_HV512].pipeline; break;
default:
{
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
GGML_LOG_ERROR("add template specialization for this type\n");
GGML_ABORT("add template specialization for this type");
}
}
} else {
GGML_LOG_ERROR("unsupported size: %lld\n", ne20);
GGML_LOG_ERROR("add template specialization for this size\n");
GGML_ABORT("add template specialization for this size");
}
} break;
default:
{
GGML_LOG_ERROR("unsupported size: %lld\n", ne00);

View file

@ -3598,6 +3598,7 @@ template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_f16_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 192, 192>;
template [[host_name("kernel_flash_attn_ext_f16_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 192, 128>;
template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 256, 256>;
template [[host_name("kernel_flash_attn_ext_f16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 576, 512>;
#if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_flash_attn_ext_bf16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 64, 64>;
@ -3608,6 +3609,7 @@ template [[host_name("kernel_flash_attn_ext_bf16_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_bf16_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 192>;
template [[host_name("kernel_flash_attn_ext_bf16_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 128>;
template [[host_name("kernel_flash_attn_ext_bf16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 256, 256>;
template [[host_name("kernel_flash_attn_ext_bf16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 576, 512>;
#endif
template [[host_name("kernel_flash_attn_ext_q4_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 64, 64>;
@ -3618,6 +3620,7 @@ template [[host_name("kernel_flash_attn_ext_q4_0_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q4_0_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q4_0_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q4_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q4_0_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q4_1_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q4_1_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 80, 80>;
@ -3627,6 +3630,7 @@ template [[host_name("kernel_flash_attn_ext_q4_1_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q4_1_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q4_1_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q4_1_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q4_1_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q5_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q5_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 80, 80>;
@ -3636,6 +3640,7 @@ template [[host_name("kernel_flash_attn_ext_q5_0_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q5_0_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q5_0_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q5_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q5_0_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q5_1_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q5_1_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 80, 80>;
@ -3645,6 +3650,7 @@ template [[host_name("kernel_flash_attn_ext_q5_1_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q5_1_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q5_1_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q5_1_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q5_1_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q8_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q8_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 80, 80>;
@ -3654,6 +3660,7 @@ template [[host_name("kernel_flash_attn_ext_q8_0_h128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q8_0_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q8_0_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q8_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q8_0_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 576, 512>;
#undef FA_TYPES
@ -4011,6 +4018,16 @@ kernel void kernel_flash_attn_ext_vec(
typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>) flash_attn_ext_vec_t;
template [[host_name("kernel_flash_attn_ext_vec_f16_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 96, 96, 4>;
#if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 96, 96, 4>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_h96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>;
#if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 128, 128, 4>;
@ -4051,6 +4068,16 @@ template [[host_name("kernel_flash_attn_ext_vec_q5_0_h256")]] kernel flash_attn_
template [[host_name("kernel_flash_attn_ext_vec_q5_1_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 256, 256, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 256, 256, 4>;
template [[host_name("kernel_flash_attn_ext_vec_f16_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 576, 512, 2>;
#if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 576, 512, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_hk576_hv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 576, 512, 2>;
#undef FA_TYPES
template<typename T>