This commit is contained in:
Michael Yang 2025-04-03 15:18:29 -07:00 committed by Michael Yang
parent 54055a6dae
commit f0c66e6dea
13 changed files with 833 additions and 15 deletions

View file

@ -173,6 +173,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
switch p.Architectures[0] {
case "LlamaForCausalLM":
conv = &llamaModel{}
case "Llama4ForConditionalGeneration":
conv = &llama4Model{}
case "Mistral3ForConditionalGeneration":
conv = &mistral3Model{}
case "MixtralForCausalLM":

View file

@ -42,6 +42,8 @@ type llamaModel struct {
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
HeadDim uint32 `json:"head_dim"`
skipRepack bool
}
var _ ModelConverter = (*llamaModel)(nil)
@ -70,6 +72,10 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
}
if p.HeadDim > 0 {
kv["llama.attention.head_dim"] = p.HeadDim
}
if p.RopeTheta > 0 {
kv["llama.rope.freq_base"] = p.RopeTheta
}
@ -133,9 +139,10 @@ func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
}
for _, t := range ts {
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
strings.HasSuffix(t.Name(), "attn_k.weight") {
t.SetRepacker(p.repack)
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
if !p.skipRepack {
t.SetRepacker(p.repack)
}
}
out = append(out, ggml.Tensor{

167
convert/convert_llama4.go Normal file
View file

@ -0,0 +1,167 @@
package convert
import (
"slices"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type llama4Model struct {
ModelParameters
TextModel struct {
llamaModel
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
NumLocalExperts uint32 `json:"num_local_experts"`
InterleaveMOELayerStep uint32 `json:"interleave_moe_layer_step"`
UseQKNorm bool `json:"use_qk_norm"`
IntermediateSizeMLP uint32 `json:"intermediate_size_mlp"`
} `json:"text_config"`
VisionModel struct {
NumHiddenLayers uint32 `json:"num_hidden_layers"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
ImageSize uint32 `json:"image_size"`
PatchSize uint32 `json:"patch_size"`
RopeTheta float32 `json:"rope_theta"`
NormEpsilon float32 `json:"norm_eps"`
PixelShuffleRatio float32 `json:"pixel_shuffle_ratio"`
} `json:"vision_config"`
}
// KV implements ModelConverter.
func (p *llama4Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama4"
for k, v := range p.TextModel.KV(t) {
if strings.HasPrefix(k, "llama.") {
kv[strings.ReplaceAll(k, "llama.", "llama4.")] = v
}
}
kv["llama4.intermediate_size"] = p.TextModel.IntermediateSizeMLP
kv["llama4.intermediate_size_moe"] = p.TextModel.IntermediateSize
kv["llama4.expert_count"] = p.TextModel.NumLocalExperts
kv["llama4.expert_used_count"] = p.TextModel.NumExpertsPerToken
kv["llama4.interleave_moe_layer_step"] = p.TextModel.InterleaveMOELayerStep
kv["llama4.use_qk_norm"] = p.TextModel.UseQKNorm
kv["llama4.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["llama4.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["llama4.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["llama4.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["llama4.vision.image_size"] = p.VisionModel.ImageSize
kv["llama4.vision.patch_size"] = p.VisionModel.PatchSize
kv["llama4.vision.rope.freq_base"] = p.VisionModel.RopeTheta
kv["llama4.vision.layer_norm_epsilon"] = p.VisionModel.NormEpsilon
kv["llama4.vision.pixel_shuffle_ratio"] = p.VisionModel.PixelShuffleRatio
return kv
}
// Replacements implements ModelConverter.
func (p *llama4Model) Replacements() []string {
return append(
p.TextModel.Replacements(),
"language_model.", "",
"vision_model", "v",
"multi_modal_projector", "mm",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.", "ffn_",
"shared_expert.down_proj", "down_shexp",
"shared_expert.gate_proj", "gate_shexp",
"shared_expert.up_proj", "up_shexp",
"experts.down_proj", "down_exps.weight",
"experts.gate_up_proj", "gate_up_exps.weight",
"router", "gate_inp",
"patch_embedding.linear", "patch_embedding",
)
}
// Tensors implements ModelConverter.
func (p *llama4Model) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
var textTensors []Tensor
for _, t := range ts {
if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
} else if strings.Contains(t.Name(), "ffn_gate_up_exps") {
// gate and up projectors are fused
// dims[1], dims[2] must be swapped
// [experts, hidden_size, intermediate_size * 2] --> [experts, intermediate_size, hidden_size]
halfDim := int(t.Shape()[2]) / 2
newShape := slices.Clone(t.Shape())
newShape[1], newShape[2] = newShape[2]/2, newShape[1]
for i, name := range []string{"ffn_gate_exps", "ffn_up_exps"} {
// clone tensor since we need separate repackers
tt := t.Clone()
tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
out = append(out, ggml.Tensor{
Name: strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
Kind: tt.Kind(),
Shape: newShape,
WriterTo: tt,
})
}
} else if strings.Contains(t.Name(), "ffn_down_exps") {
// dims[1], dims[2] must be swapped
// [experts, intermediate_size, hidden_size] --> [experts, hidden_size, intermediate_size]
t.SetRepacker(p.repack())
newShape := slices.Clone(t.Shape())
newShape[1], newShape[2] = newShape[2], newShape[1]
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: newShape,
WriterTo: t,
})
} else {
textTensors = append(textTensors, t)
}
}
p.TextModel.skipRepack = true
out = append(out, p.TextModel.Tensors(textTensors)...)
return out
}
func (p *llama4Model) repack(slice ...tensor.Slice) Repacker {
return func(name string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i, dim := range shape {
dims[i] = int(dim)
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err := t.Slice(slice...)
if err != nil {
return nil, err
}
if err := t.T(0, 2, 1); err != nil {
return nil, err
}
t = tensor.Materialize(t)
// flatten tensor so it can be return as a vector
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
}
}

View file

@ -11,14 +11,15 @@ type Tensor interface {
Name() string
Shape() []uint64
Kind() uint32
SetRepacker(repacker)
SetRepacker(Repacker)
WriteTo(io.Writer) (int64, error)
Clone() Tensor
}
type tensorBase struct {
name string
shape []uint64
repacker
name string
shape []uint64
repacker Repacker
}
func (t tensorBase) Name() string {
@ -36,7 +37,8 @@ const (
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
t.name == "token_types.weight" {
t.name == "token_types.weight" ||
t.name == "v.positional_embedding_vlm" {
// these tensors are always F32
return 0
}
@ -51,11 +53,11 @@ func (t tensorBase) Kind() uint32 {
}
}
func (t *tensorBase) SetRepacker(fn repacker) {
func (t *tensorBase) SetRepacker(fn Repacker) {
t.repacker = fn
}
type repacker func(string, []float32, []uint64) ([]float32, error)
type Repacker func(string, []float32, []uint64) ([]float32, error)
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
patterns := []struct {

View file

@ -94,6 +94,21 @@ type safetensor struct {
*tensorBase
}
func (st safetensor) Clone() Tensor {
return &safetensor{
fs: st.fs,
path: st.path,
dtype: st.dtype,
offset: st.offset,
size: st.size,
tensorBase: &tensorBase{
name: st.name,
repacker: st.repacker,
shape: slices.Clone(st.shape),
},
}
}
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
f, err := st.fs.Open(st.path)
if err != nil {

View file

@ -43,6 +43,17 @@ type torch struct {
*tensorBase
}
func (t torch) Clone() Tensor {
return torch{
storage: t.storage,
tensorBase: &tensorBase{
name: t.name,
shape: t.shape,
repacker: t.repacker,
},
}
}
func (pt torch) WriteTo(w io.Writer) (int64, error) {
return 0, nil
}

View file

@ -124,6 +124,7 @@ func (kv KV) OllamaEngineRequired() bool {
return slices.Contains([]string{
"gemma3",
"mistral3",
"llama4",
}, kv.Architecture())
}

View file

@ -133,6 +133,7 @@ type Tensor interface {
Mul(ctx Context, t2 Tensor) Tensor
Mulmat(ctx Context, t2 Tensor) Tensor
MulmatFullPrec(ctx Context, t2 Tensor) Tensor
MulmatID(ctx Context, t2, ids Tensor) Tensor
Softmax(ctx Context) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
@ -150,6 +151,7 @@ type Tensor interface {
Tanh(ctx Context) Tensor
GELU(ctx Context) Tensor
SILU(ctx Context) Tensor
Sigmoid(ctx Context) Tensor
Reshape(ctx Context, shape ...int) Tensor
View(ctx Context, offset int, shape ...int) Tensor
@ -168,6 +170,8 @@ type Tensor interface {
Rows(ctx Context, t2 Tensor) Tensor
Copy(ctx Context, t2 Tensor) Tensor
Duplicate(ctx Context) Tensor
TopK(ctx Context, k int) Tensor
}
// ScaledDotProductAttention implements a fused attention

View file

@ -884,17 +884,32 @@ func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) MulmatID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul_mat_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := (&Tensor{b: t.b, t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
if b != nil {
tt = tt.Add(ctx, b)
tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
if w != nil {
tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
if b != nil {
tt = C.ggml_add(ctx.(*Context).ctx, tt, b.(*Tensor).t)
}
}
return tt
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
return (&Tensor{b: t.b, t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
tt := C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))
if w != nil {
tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
}
return &Tensor{b: t.b, t: tt}
}
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
@ -995,6 +1010,13 @@ func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
}
}
func (t *Tensor) Sigmoid(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sigmoid_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
@ -1158,3 +1180,10 @@ func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
t: C.ggml_dup(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)),
}
}

View file

@ -0,0 +1,100 @@
package llama4
import (
"bytes"
"image"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.BytePairEncoding
*VisionModel `gguf:"v,vision"`
*Projector `gguf:"mm"`
*TextModel
}
type Projector struct {
Linear1 *nn.Linear `gguf:"linear_1"`
}
func (p *Projector) Forward(ctx ml.Context, visionOutputs ml.Tensor) ml.Tensor {
return p.Linear1.Forward(ctx, visionOutputs)
}
func New(c fs.Config) (model.Model, error) {
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
},
),
VisionModel: newVisionModel(c),
TextModel: newTextModel(c),
}
m.Cache = kvcache.NewWrapperCache(
// TODO: pretend this is chunked attention for now
kvcache.NewSWACache(8192, m.Shift),
kvcache.NewCausalCache(m.Shift),
)
return &m, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
if len(m.VisionModel.Layers) < 1 {
return nil, model.ErrNoVisionModel
}
img, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
f32s, aspectRatio, err := m.ProcessImage(ctx, img)
if err != nil {
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s, len(f32s))
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0), visionOutputs.Dim(1)*visionOutputs.Dim(2)*visionOutputs.Dim(3))
return m.Projector.Forward(ctx, visionOutputs), nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}
func init() {
model.Register("llama4", New)
}

View file

@ -0,0 +1,223 @@
package llama4
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model/input"
)
type TextAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
RopeFactors ml.Tensor `gguf:"rope_factors"`
}
func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, useRope bool, opts *TextOptions) ml.Tensor {
batchSize, headDim := hiddenStates.Dim(1), cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
if useRope {
query = query.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale)
key = key.RoPE(ctx, positions, sa.RopeFactors, uint32(opts.ropeDim), uint32(0), opts.ropeBase, opts.ropeScale)
if opts.useQKNorm {
query = query.RMSNorm(ctx, nil, opts.eps)
key = key.RMSNorm(ctx, nil, opts.eps)
}
}
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, attention)
}
type TextMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type TextExperts struct {
Gate ml.Tensor `gguf:"ffn_gate_exps.weight"`
Up ml.Tensor `gguf:"ffn_up_exps.weight"`
Down ml.Tensor `gguf:"ffn_down_exps.weight"`
}
func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tensor, opts *TextOptions) ml.Tensor {
experts := routerLogits.TopK(ctx, opts.numExpertsUsed)
scores := routerLogits.Sigmoid(ctx).Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, experts)
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
hiddenStates = hiddenStates.Repeat(ctx, 1, opts.numExpertsUsed)
hiddenStates = hiddenStates.Mul(ctx, scores)
upStates := e.Up.MulmatID(ctx, hiddenStates, experts)
gateStates := e.Gate.MulmatID(ctx, hiddenStates, experts)
downStates := e.Down.MulmatID(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
nextStates := downStates.View(ctx, 0, hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates.Add(ctx, downStates.View(ctx, i*downStates.Stride(1), hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2)))
}
return nextStates
}
// TextSharedExpert is TextMLP with different names
type TextSharedExpert struct {
Gate *nn.Linear `gguf:"ffn_gate_shexp"`
Up *nn.Linear `gguf:"ffn_up_shexp"`
Down *nn.Linear `gguf:"ffn_down_shexp"`
}
func (mlp *TextSharedExpert) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type TextMOE struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Experts *TextExperts
SharedExpert *TextSharedExpert
}
func (moe *TextMOE) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
routerLogits := moe.Router.Forward(ctx, hiddenStates)
sharedStates := moe.SharedExpert.Forward(ctx, hiddenStates, opts)
routedStates := moe.Experts.Forward(ctx, hiddenStates, routerLogits, opts)
return sharedStates.Add(ctx, routedStates)
}
type TextFeedForward interface {
Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor
}
type TextLayer struct {
AttentionNorm *nn.LayerNorm `gguf:"attn_norm"`
Attention *TextAttention
FFNNorm *nn.LayerNorm `gguf:"ffn_norm"`
FeedForward TextFeedForward
}
func (d *TextLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, useRope bool, opts *TextOptions) ml.Tensor {
residual := hiddenStates
// self attention
hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, useRope, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = d.FFNNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = d.FeedForward.Forward(ctx, hiddenStates, opts)
return residual.Add(ctx, hiddenStates)
}
type TextOptions struct {
hiddenSize int
numHeads, numKVHeads, headDim int
numExperts, numExpertsUsed int
ropeDim int
ropeBase, ropeScale float32
eps float32
interleaveLayerStep int
useQKNorm bool
}
type TextModel struct {
Layers []TextLayer `gguf:"blk"`
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
OutputNorm *nn.LayerNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*TextOptions
}
func newTextModel(c fs.Config) *TextModel {
layers := make([]TextLayer, c.Uint("block_count"))
interleaveLayerStep := c.Uint("interleave_moe_layer_step", 1)
for i := range layers {
if (i+1)%int(interleaveLayerStep) == 0 {
layers[i] = TextLayer{FeedForward: &TextMOE{}}
} else {
layers[i] = TextLayer{FeedForward: &TextMLP{}}
}
}
return &TextModel{
Layers: layers,
TextOptions: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.head_dim", 128)),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
ropeDim: int(c.Uint("rope.dimension_count")),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
eps: c.Float("attention.layer_norm_rms_epsilon"),
interleaveLayerStep: int(c.Uint("interleave_moe_layer_step", 1)),
useQKNorm: c.Bool("use_qk_norm", true),
},
}
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
hiddenStates := m.TokenEmbedding.Forward(ctx, inputs)
for i, layer := range m.Layers {
cache.SetLayer(i)
wc := cache.(*kvcache.WrapperCache)
wc.SetLayerType(1)
useChunkedAttention := (i+1)%4 != 0
if useChunkedAttention {
wc.SetLayerType(0)
}
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, lastLayerOutputs, cache, useChunkedAttention, m.TextOptions)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates)
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, m.Layers[layer].Attention.RopeFactors, uint32(0), uint32(m.ropeDim), m.ropeBase, m.ropeScale), nil
}

View file

@ -0,0 +1,256 @@
package llama4
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
type VisionAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
// applyVisionRotaryEmbedding applies 2D rotary embedding to the input tensor.
// This is equivalent to the Pytorch implmentation using half rotations:
//
// cos, sin = torch.cos(freqs), torch.sin(freqs)
// cos = cos.unsqueeze(-1)
// sin = sin.unsqueeze(-1)
// t = t.reshape(*t.shape[:-1], -1, 2)
// t_out = (t * cos) + (_rotate_half(t) * sin)
// t_out = t_out.flatten(3)
//
// Which is equivalent to the Pytorch implementation using complex numbers:
//
// t_ = torch.view_as_complex(t.float().reshape(*t.shape[:-1], -1, 2))
// freqs_ci = reshape_for_broadcast(freqs_ci=freq_cis, t=t_) # freqs_ci[:,:,None,:]
// freqs_ci = freqs_ci.to(t_.device)
// t_out = torch.view_as_real(t_ * freqs_ci).flatten(3)
//
// Due to the 1) the dimensional and 2) the datatype limitations of current backends,
// we need to use a different approach to achieve the same result.
func applyVisionRotaryEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
width, height, channels, tiles := t.Dim(0), t.Dim(1), t.Dim(2), t.Dim(3)
t = t.Reshape(ctx, 2, t.Dim(0)/2, t.Dim(1)*t.Dim(2)*t.Dim(3))
// t1 = t[..., 0::2]
t1 := t.View(ctx, 0, 1, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2)).Contiguous(ctx)
t1 = t1.Reshape(ctx, width/2, height, channels, tiles)
// t2 = t[..., 1::2]
t2 := t.View(ctx, t.Stride(0), 1, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2)).Contiguous(ctx)
t2 = t2.Reshape(ctx, width/2, height, channels, tiles)
// cos_out = torch.stack((t1 * cos, t2 * cos), dim=-1)
cosOut := t1.Mul(ctx, cos).Concat(ctx, t2.Mul(ctx, cos), 0)
cosOut = cosOut.Reshape(ctx, cosOut.Dim(0)/2, 2, cosOut.Dim(1)*cosOut.Dim(2)*cosOut.Dim(3))
cosOut = cosOut.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
cosOut = cosOut.Reshape(ctx, width, height, channels, tiles)
// sin_out = torch.stack((-t2 * sin, t1 * sin), dim=-1)
sinOut := t2.Neg(ctx).Mul(ctx, sin).Concat(ctx, t1.Mul(ctx, sin), 0)
sinOut = sinOut.Reshape(ctx, sinOut.Dim(0)/2, 2, sinOut.Dim(1)*sinOut.Dim(2)*sinOut.Dim(3))
sinOut = sinOut.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
sinOut = sinOut.Reshape(ctx, width, height, channels, tiles)
return cosOut.Add(ctx, sinOut)
}
func (sa *VisionAttention) Forward(ctx ml.Context, hiddenState, cos, sin ml.Tensor, opts *VisionOptions) ml.Tensor {
headDim := opts.hiddenSize / opts.numHeads
query := sa.Query.Forward(ctx, hiddenState)
key := sa.Key.Forward(ctx, hiddenState)
value := sa.Value.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), query.Dim(2))
key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), key.Dim(2))
value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), value.Dim(2))
query = applyVisionRotaryEmbedding(ctx, query, cos, sin)
key = applyVisionRotaryEmbedding(ctx, key, cos, sin)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), attention.Dim(3))
return sa.Output.Forward(ctx, attention)
}
type VisionMLP struct {
FC1 *nn.Linear `gguf:"fc1"`
FC2 *nn.Linear `gguf:"fc2"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionOptions) ml.Tensor {
hiddenStates = mlp.FC1.Forward(ctx, hiddenStates).GELU(ctx)
hiddenStates = mlp.FC2.Forward(ctx, hiddenStates)
return hiddenStates
}
type VisionLayer struct {
InputLayerNorm *nn.LayerNorm `gguf:"attn_norm"`
*VisionAttention
PostAttentionNorm *nn.LayerNorm `gguf:"ffn_norm"`
*VisionMLP `gguf:"mlp"`
}
func (e *VisionLayer) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts *VisionOptions) ml.Tensor {
residual := hiddenStates
// self attention
hiddenStates = e.InputLayerNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.VisionAttention.Forward(ctx, hiddenStates, cos, sin, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
// MLP
residual = hiddenStates
hiddenStates = e.PostAttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.VisionMLP.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
return hiddenStates
}
type VisionAdapter struct {
FC1 *nn.Linear `gguf:"mlp.fc1"`
FC2 *nn.Linear `gguf:"mlp.fc2"`
}
func (a *VisionAdapter) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionOptions) ml.Tensor {
patches := hiddenStates.Dim(1)
patchSize := int(math.Sqrt(float64(patches)))
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), patchSize, patchSize, hiddenStates.Dim(2))
channels, width, height, tiles := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2), hiddenStates.Dim(3)
channels, width = int(float32(channels)/opts.pixelShuffleRatio), int(float32(width)*opts.pixelShuffleRatio)
hiddenStates = hiddenStates.Reshape(ctx, channels, width, height, tiles)
hiddenStates = hiddenStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
channels, height = int(float32(channels)/opts.pixelShuffleRatio), int(float32(height)*opts.pixelShuffleRatio)
hiddenStates = hiddenStates.Reshape(ctx, channels, width, height, tiles)
hiddenStates = hiddenStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
hiddenStates = hiddenStates.Reshape(ctx, channels, width*height, tiles)
hiddenStates = a.FC1.Forward(ctx, hiddenStates).GELU(ctx)
hiddenStates = a.FC2.Forward(ctx, hiddenStates).GELU(ctx)
return hiddenStates
}
type VisionOptions struct {
hiddenSize, numHeads int
imageSize, patchSize int
ropeTheta float32
eps float32
pixelShuffleRatio float32
}
type PatchEmbedding struct {
*nn.Linear
}
func (p *PatchEmbedding) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionOptions) ml.Tensor {
kernel := ctx.Input().Empty(ml.DTypeF32, opts.patchSize, opts.patchSize, hiddenStates.Dim(2))
hiddenStates = kernel.IM2Col(ctx, hiddenStates, opts.patchSize, opts.patchSize, 0, 0, 1, 1)
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), hiddenStates.Dim(1)*hiddenStates.Dim(2), hiddenStates.Dim(3))
return p.Linear.Forward(ctx, hiddenStates)
}
type VisionModel struct {
Layers []VisionLayer `gguf:"blk"`
*PatchEmbedding `gguf:"patch_embedding"`
ClassEmbedding ml.Tensor `gguf:"class_embedding"`
PositionalEmbedding ml.Tensor `gguf:"positional_embedding_vlm"`
LayerNormPre *nn.LayerNorm `gguf:"layernorm_pre"`
LayerNormPost *nn.LayerNorm `gguf:"layernorm_post"`
*VisionAdapter `gguf:"vision_adapter"`
*VisionOptions
}
func newVisionModel(c fs.Config) *VisionModel {
return &VisionModel{
Layers: make([]VisionLayer, c.Uint("vision.block_count")),
VisionOptions: &VisionOptions{
hiddenSize: int(c.Uint("vision.embedding_length")),
numHeads: int(c.Uint("vision.attention.head_count")),
imageSize: int(c.Uint("vision.image_size")),
patchSize: int(c.Uint("vision.patch_size")),
ropeTheta: float32(c.Float("vision.rope.freq_base")),
eps: c.Float("vision.layer_norm_epsilon"),
pixelShuffleRatio: float32(c.Float("vision.pixel_shuffle_ratio")),
},
}
}
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.VisionOptions)
hiddenStates = hiddenStates.Concat(ctx, m.ClassEmbedding.Repeat(ctx, 2, hiddenStates.Dim(2)), 1)
hiddenStates = hiddenStates.Add(ctx, m.PositionalEmbedding)
hiddenStates = m.LayerNormPre.Forward(ctx, hiddenStates, m.eps)
cos, sin := m.rotaryEmbedding(ctx)
for _, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, m.VisionOptions)
}
hiddenStates = m.LayerNormPost.Forward(ctx, hiddenStates, m.eps)
hiddenStates = hiddenStates.Unpad(ctx, 0, 1, 0, 0)
hiddenStates = m.VisionAdapter.Forward(ctx, hiddenStates, m.VisionOptions)
return hiddenStates
}
// floorDiv is a helper function to perform floor division. This mimics PyTorch's div(round_mode='floor') function
// which in turn mimics Python's // operator.
func floorDiv[T int | int16 | int32 | int64 | uint | uint16 | uint32 | uint64](a, b T) T {
if b == 0 {
panic("division by zero")
}
if (a >= 0 && b > 0) || (a <= 0 && b < 0) || a%b == 0 {
return a / b
}
return a/b - 1
}
func (m *VisionModel) rotaryEmbedding(ctx ml.Context) (ml.Tensor, ml.Tensor) {
patchesPerSide := m.imageSize / m.patchSize
numPatches := patchesPerSide*patchesPerSide + 1
headDim := m.hiddenSize / m.numHeads
freqDim := headDim / 2
freqs := make([]float32, numPatches*freqDim)
for i := range numPatches - 1 {
for j := 0; j < freqDim; j += 2 {
positionX := i*freqDim/2 + j/2
positionY := (i+numPatches)*freqDim/2 + j/2
ropeFreq := math.Pow(float64(m.ropeTheta), float64(j)*2/float64(headDim))
freqs[positionX] = float32(float64(1+i-floorDiv(i, patchesPerSide)*patchesPerSide) / ropeFreq)
freqs[positionY] = float32(float64(1+floorDiv(i, patchesPerSide)) / ropeFreq)
}
}
ropeFreqs, err := ctx.Input().FromFloatSlice(freqs, freqDim/2, numPatches, 2)
if err != nil {
panic(err)
}
ropeFreqs = ropeFreqs.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
ropeFreqs = ropeFreqs.Reshape(ctx, freqDim, 1, numPatches)
return ropeFreqs.Cos(ctx), ropeFreqs.Sin(ctx)
}

View file

@ -4,6 +4,7 @@ import (
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/llama4"
_ "github.com/ollama/ollama/model/models/mistral3"
_ "github.com/ollama/ollama/model/models/mllama"
)