// NOTE: This is modified from clip.cpp only for LLaVA, // so there might be still unnecessary artifacts hanging around // I'll gradually clean and extend it // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch #include "clip.h" #include "clip-impl.h" #include "ggml.h" #include "ggml-cpp.h" #include "ggml-cpu.h" #include "ggml-alloc.h" #include "ggml-backend.h" #include "gguf.h" #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include #if __GLIBCXX__ #include #include #include #endif #endif struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL}; //#define CLIP_DEBUG_FUNCTIONS #ifdef CLIP_DEBUG_FUNCTIONS static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) { std::ofstream file(filename, std::ios::binary); if (!file.is_open()) { LOG_ERR("Failed to open file for writing: %s\n", filename.c_str()); return; } // PPM header: P6 format, width, height, and max color value file << "P6\n" << img.nx << " " << img.ny << "\n255\n"; // Write pixel data for (size_t i = 0; i < img.buf.size(); i += 3) { // PPM expects binary data in RGB format, which matches our image buffer file.write(reinterpret_cast(&img.buf[i]), 3); } file.close(); } static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) { std::ofstream file(filename, std::ios::binary); if (!file.is_open()) { LOG_ERR("Failed to open file for writing: %s\n", filename.c_str()); return; } int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data int bytesPerPixel = 3; int widthInBytes = img.nx * bytesPerPixel; int paddingAmount = (4 - (widthInBytes % 4)) % 4; int stride = widthInBytes + paddingAmount; // Bitmap file header unsigned char fileHeader[14] = { 'B','M', // Signature 0,0,0,0, // Image file size in bytes 0,0,0,0, // Reserved 54,0,0,0 // Start of pixel array }; // Total file size fileSize = 54 + (stride * img.ny); fileHeader[2] = (unsigned char)(fileSize); fileHeader[3] = (unsigned char)(fileSize >> 8); fileHeader[4] = (unsigned char)(fileSize >> 16); fileHeader[5] = (unsigned char)(fileSize >> 24); // Bitmap information header (BITMAPINFOHEADER) unsigned char infoHeader[40] = { 40,0,0,0, // Size of this header (40 bytes) 0,0,0,0, // Image width 0,0,0,0, // Image height 1,0, // Number of color planes 24,0, // Bits per pixel 0,0,0,0, // No compression 0,0,0,0, // Image size (can be 0 for no compression) 0,0,0,0, // X pixels per meter (not specified) 0,0,0,0, // Y pixels per meter (not specified) 0,0,0,0, // Total colors (color table not used) 0,0,0,0 // Important colors (all are important) }; // Width and height in the information header infoHeader[4] = (unsigned char)(img.nx); infoHeader[5] = (unsigned char)(img.nx >> 8); infoHeader[6] = (unsigned char)(img.nx >> 16); infoHeader[7] = (unsigned char)(img.nx >> 24); infoHeader[8] = (unsigned char)(img.ny); infoHeader[9] = (unsigned char)(img.ny >> 8); infoHeader[10] = (unsigned char)(img.ny >> 16); infoHeader[11] = (unsigned char)(img.ny >> 24); // Write file headers file.write(reinterpret_cast(fileHeader), sizeof(fileHeader)); file.write(reinterpret_cast(infoHeader), sizeof(infoHeader)); // Pixel data std::vector padding(3, 0); // Max padding size to be added to each row for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top for (int x = 0; x < img.nx; ++x) { // Each pixel size_t pixelIndex = (y * img.nx + x) * 3; unsigned char pixel[3] = { img.buf[pixelIndex + 2], // BMP stores pixels in BGR format img.buf[pixelIndex + 1], img.buf[pixelIndex] }; file.write(reinterpret_cast(pixel), 3); } // Write padding for the row file.write(reinterpret_cast(padding.data()), paddingAmount); } file.close(); } // debug function to convert f32 to u8 static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) { dst.nx = src.nx; dst.ny = src.ny; dst.buf.resize(3 * src.nx * src.ny); for (size_t i = 0; i < src.buf.size(); ++i) { dst.buf[i] = static_cast(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255)); } } #endif // // clip layers // enum patch_merge_type { PATCH_MERGE_FLAT, PATCH_MERGE_SPATIAL_UNPAD, }; struct clip_hparams { int32_t image_size; int32_t patch_size; int32_t hidden_size; int32_t n_intermediate; int32_t projection_dim; int32_t n_head; int32_t n_layer; int32_t proj_scale_factor = 0; // idefics3 patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT; float eps = 1e-6; float rope_theta = 0.0; std::vector image_grid_pinpoints; int32_t image_crop_resolution; std::unordered_set vision_feature_layer; int32_t attn_window_size = 0; int32_t n_wa_pattern = 0; }; struct clip_layer { // attention struct ggml_tensor * k_w = nullptr; struct ggml_tensor * k_b = nullptr; struct ggml_tensor * q_w = nullptr; struct ggml_tensor * q_b = nullptr; struct ggml_tensor * v_w = nullptr; struct ggml_tensor * v_b = nullptr; struct ggml_tensor * o_w = nullptr; struct ggml_tensor * o_b = nullptr; // layernorm 1 struct ggml_tensor * ln_1_w = nullptr; struct ggml_tensor * ln_1_b = nullptr; // ff struct ggml_tensor * ff_i_w = nullptr; // legacy naming struct ggml_tensor * ff_i_b = nullptr; // legacy naming struct ggml_tensor * ff_o_w = nullptr; // legacy naming struct ggml_tensor * ff_o_b = nullptr; // legacy naming struct ggml_tensor * ff_up_w = nullptr; struct ggml_tensor * ff_up_b = nullptr; struct ggml_tensor * ff_gate_w = nullptr; struct ggml_tensor * ff_gate_b = nullptr; struct ggml_tensor * ff_down_w = nullptr; struct ggml_tensor * ff_down_b = nullptr; struct ggml_tensor * ff_g_w = NULL; struct ggml_tensor * ff_g_b = NULL; // layernorm 2 struct ggml_tensor * ln_2_w = nullptr; struct ggml_tensor * ln_2_b = nullptr; }; struct clip_vision_model { struct clip_hparams hparams; // embeddings struct ggml_tensor * class_embedding = nullptr; struct ggml_tensor * patch_embeddings_0 = nullptr; struct ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL) struct ggml_tensor * patch_bias = nullptr; struct ggml_tensor * position_embeddings = nullptr; struct ggml_tensor * pre_ln_w = nullptr; struct ggml_tensor * pre_ln_b = nullptr; std::vector layers; struct ggml_tensor * post_ln_w; struct ggml_tensor * post_ln_b; struct ggml_tensor * projection; // LLaVA projection struct ggml_tensor * mm_0_w = nullptr; struct ggml_tensor * mm_0_b = nullptr; struct ggml_tensor * mm_2_w = nullptr; struct ggml_tensor * mm_2_b = nullptr; struct ggml_tensor * image_newline = nullptr; // Yi type models with mlp+normalization projection struct ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4 struct ggml_tensor * mm_1_b = nullptr; struct ggml_tensor * mm_3_w = nullptr; struct ggml_tensor * mm_3_b = nullptr; struct ggml_tensor * mm_4_w = nullptr; struct ggml_tensor * mm_4_b = nullptr; //GLMV-Edge projection struct ggml_tensor * mm_model_adapter_conv_w = nullptr; struct ggml_tensor * mm_model_adapter_conv_b = nullptr; // MobileVLM projection struct ggml_tensor * mm_model_mlp_1_w = nullptr; struct ggml_tensor * mm_model_mlp_1_b = nullptr; struct ggml_tensor * mm_model_mlp_3_w = nullptr; struct ggml_tensor * mm_model_mlp_3_b = nullptr; struct ggml_tensor * mm_model_block_1_block_0_0_w = nullptr; struct ggml_tensor * mm_model_block_1_block_0_1_w = nullptr; struct ggml_tensor * mm_model_block_1_block_0_1_b = nullptr; struct ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr; struct ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr; struct ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr; struct ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr; struct ggml_tensor * mm_model_block_1_block_2_0_w = nullptr; struct ggml_tensor * mm_model_block_1_block_2_1_w = nullptr; struct ggml_tensor * mm_model_block_1_block_2_1_b = nullptr; struct ggml_tensor * mm_model_block_2_block_0_0_w = nullptr; struct ggml_tensor * mm_model_block_2_block_0_1_w = nullptr; struct ggml_tensor * mm_model_block_2_block_0_1_b = nullptr; struct ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr; struct ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr; struct ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr; struct ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr; struct ggml_tensor * mm_model_block_2_block_2_0_w = nullptr; struct ggml_tensor * mm_model_block_2_block_2_1_w = nullptr; struct ggml_tensor * mm_model_block_2_block_2_1_b = nullptr; // MobileVLM_V2 projection struct ggml_tensor * mm_model_mlp_0_w = nullptr; struct ggml_tensor * mm_model_mlp_0_b = nullptr; struct ggml_tensor * mm_model_mlp_2_w = nullptr; struct ggml_tensor * mm_model_mlp_2_b = nullptr; struct ggml_tensor * mm_model_peg_0_w = nullptr; struct ggml_tensor * mm_model_peg_0_b = nullptr; // MINICPMV projection struct ggml_tensor * mm_model_pos_embed_k = nullptr; struct ggml_tensor * mm_model_query = nullptr; struct ggml_tensor * mm_model_proj = nullptr; struct ggml_tensor * mm_model_kv_proj = nullptr; struct ggml_tensor * mm_model_attn_q_w = nullptr; struct ggml_tensor * mm_model_attn_q_b = nullptr; struct ggml_tensor * mm_model_attn_k_w = nullptr; struct ggml_tensor * mm_model_attn_k_b = nullptr; struct ggml_tensor * mm_model_attn_v_w = nullptr; struct ggml_tensor * mm_model_attn_v_b = nullptr; struct ggml_tensor * mm_model_attn_o_w = nullptr; struct ggml_tensor * mm_model_attn_o_b = nullptr; struct ggml_tensor * mm_model_ln_q_w = nullptr; struct ggml_tensor * mm_model_ln_q_b = nullptr; struct ggml_tensor * mm_model_ln_kv_w = nullptr; struct ggml_tensor * mm_model_ln_kv_b = nullptr; struct ggml_tensor * mm_model_ln_post_w = nullptr; struct ggml_tensor * mm_model_ln_post_b = nullptr; // gemma3 struct ggml_tensor * mm_input_proj_w = nullptr; struct ggml_tensor * mm_soft_emb_norm_w = nullptr; // pixtral struct ggml_tensor * token_embd_img_break = nullptr; }; struct clip_ctx { bool has_llava_projector = false; int minicpmv_version = 0; struct clip_vision_model vision_model; projector_type proj_type = PROJECTOR_TYPE_MLP; int32_t max_feature_layer; // unused in newer models like gemma3 float image_mean[3]; float image_std[3]; bool use_gelu = false; bool use_silu = false; gguf_context_ptr ctx_gguf; ggml_context_ptr ctx_data; std::vector buf_compute_meta; std::vector backend_ptrs; std::vector backend_buft; ggml_backend_t backend; ggml_backend_t backend_cpu; ggml_backend_buffer_ptr buf; int max_nodes = 8192; ggml_backend_sched_ptr sched; clip_image_size load_image_size; clip_ctx(clip_context_params & ctx_params) { backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr); backend = ctx_params.use_gpu ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr) : nullptr; if (backend) { LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend)); backend_ptrs.push_back(backend); backend_buft.push_back(ggml_backend_get_default_buffer_type(backend)); } else { backend = backend_cpu; LOG_INF("%s: CLIP using CPU backend\n", __func__); } backend_ptrs.push_back(backend_cpu); backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu)); sched.reset( ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false) ); } ~clip_ctx() { ggml_backend_free(backend); if (backend != backend_cpu) { ggml_backend_free(backend_cpu); } } }; static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32 & img) { const auto & model = ctx->vision_model; const auto & hparams = model.hparams; int image_size_width = img.nx; int image_size_height = img.ny; const int patch_size = hparams.patch_size; const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int hidden_size = hparams.hidden_size; const int n_head = hparams.n_head; const int d_head = hidden_size / n_head; const int n_layer = hparams.n_layer; const float eps = hparams.eps; struct ggml_init_params params = { /*.mem_size =*/ ctx->buf_compute_meta.size(), /*.mem_buffer =*/ ctx->buf_compute_meta.data(), /*.no_alloc =*/ true, }; ggml_context_ptr ctx0_ptr(ggml_init(params)); auto ctx0 = ctx0_ptr.get(); struct ggml_cgraph * gf = ggml_new_graph(ctx0); // input raw struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3); ggml_set_name(inp_raw, "inp_raw"); ggml_set_input(inp_raw); struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1); inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size); inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp)); inp = ggml_add(ctx0, inp, model.patch_bias); // position embeddings struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings); // loop over layers for (int il = 0; il < n_layer; il++) { struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states // layernorm1 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b); } // self-attention { struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b); Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches); Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b); K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches); K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b); V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches); V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head); KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches); } // attention output cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b); // re-add the layer input, e.g., residual cur = ggml_add(ctx0, cur, embeddings); embeddings = cur; // embeddings = residual, cur = hidden_states // layernorm2 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b); } cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b); // siglip uses gelu cur = ggml_gelu(ctx0, cur); cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b); // residual 2 cur = ggml_add(ctx0, embeddings, cur); embeddings = cur; } // post-layernorm if (model.post_ln_w) { embeddings = ggml_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "post_ln"); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b); } if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { const int batch_size = 1; const int mm_tokens_per_image = 256; // default value for gemma3 const int tokens_per_side = sqrt(mm_tokens_per_image); const int patches_per_image = sqrt(num_patches); const int kernel_size = patches_per_image / tokens_per_side; embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings)); embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size); // doing a pool2d to reduce the number of output tokens to 256 embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0); embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size); embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings)); // apply norm before projection embeddings = ggml_rms_norm(ctx0, embeddings, eps); embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w); // apply projection embeddings = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)), embeddings); } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) { // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578 ggml_tensor * cur = embeddings; const int scale_factor = model.hparams.proj_scale_factor; const int n_embd = cur->ne[0]; const int seq = cur->ne[1]; const int bsz = 1; // batch size, always 1 for now since we don't support batching const int height = std::sqrt(seq); const int width = std::sqrt(seq); GGML_ASSERT(scale_factor != 0); cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz); cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur), n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor, bsz); cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur), n_embd * scale_factor * scale_factor, seq / (scale_factor * scale_factor), bsz); cur = ggml_mul_mat(ctx0, model.projection, cur); embeddings = cur; } else { GGML_ABORT("SigLIP: Unsupported projector type"); } // build the graph ggml_build_forward_expand(gf, embeddings); return gf; } // implementation of the 2D RoPE without adding a new op in ggml // this is not efficient (use double the memory), but works on all backends // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065 static ggml_tensor * build_rope_2d( ggml_context * ctx0, ggml_tensor * cur, ggml_tensor * pos_h, ggml_tensor * pos_w, const float freq_base ) { const int64_t n_dim = cur->ne[0]; const int64_t n_head = cur->ne[1]; const int64_t n_pos = cur->ne[2]; // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos) // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3 // first half of cur will use 1e-0, 1e-2 (even) // second half of cur will use 1e-1, 1e-3 (odd) // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2) // then for the second half, we use freq_scale to shift the inv_freq // ^ why? replace (2i) with (2i+1) in the above equation const float freq_scale_odd = std::pow(freq_base, (float)-2/n_dim); // first half ggml_tensor * first; { first = ggml_view_3d(ctx0, cur, n_dim/2, n_head, n_pos, ggml_row_size(cur->type, n_dim), ggml_row_size(cur->type, n_dim*n_head), 0); first = ggml_rope_ext( ctx0, first, pos_h, // positions nullptr, // freq factors n_dim/2, // n_dims 0, 0, freq_base, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f ); } // second half ggml_tensor * second; { second = ggml_view_3d(ctx0, cur, n_dim/2, n_head, n_pos, ggml_row_size(cur->type, n_dim), ggml_row_size(cur->type, n_dim*n_head), n_dim/2 * ggml_element_size(cur)); second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors second = ggml_rope_ext( ctx0, second, pos_w, // positions nullptr, // freq factors n_dim/2, // n_dims 0, 0, freq_base, freq_scale_odd, 0.0f, 1.0f, 0.0f, 0.0f ); } cur = ggml_concat(ctx0, first, second, 0); return cur; } static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_image_f32 & img) { const auto & model = ctx->vision_model; const auto & hparams = model.hparams; GGML_ASSERT(ctx->proj_type == PROJECTOR_TYPE_PIXTRAL); int image_size_width = img.nx; int image_size_height = img.ny; const int patch_size = hparams.patch_size; const int n_patches_x = image_size_width / patch_size; const int n_patches_y = image_size_height / patch_size; const int num_patches = n_patches_x * n_patches_y; const int hidden_size = hparams.hidden_size; const int n_head = hparams.n_head; const int d_head = hidden_size / n_head; const int n_layer = hparams.n_layer; const float eps = hparams.eps; struct ggml_init_params params = { /*.mem_size =*/ ctx->buf_compute_meta.size(), /*.mem_buffer =*/ ctx->buf_compute_meta.data(), /*.no_alloc =*/ true, }; ggml_context_ptr ctx0_ptr(ggml_init(params)); auto ctx0 = ctx0_ptr.get(); struct ggml_cgraph * gf = ggml_new_graph(ctx0); // input raw struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3); ggml_set_name(inp_raw, "inp_raw"); ggml_set_input(inp_raw); // 2D input positions struct ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches); ggml_set_name(pos_h, "pos_h"); ggml_set_input(pos_h); struct ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches); ggml_set_name(pos_w, "pos_w"); ggml_set_input(pos_w); struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1); inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size); inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp)); struct ggml_tensor * embeddings = inp; // pre-layer norm embeddings = ggml_mul(ctx0, ggml_rms_norm(ctx0, embeddings, eps), model.pre_ln_w); // loop over layers for (int il = 0; il < n_layer; il++) { struct ggml_tensor * cur = embeddings; // pre-attention norm cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.layers[il].ln_1_w); // self-attention { struct ggml_tensor * Q = ggml_mul_mat(ctx0, model.layers[il].q_w, cur); Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches); Q = build_rope_2d(ctx0, Q, pos_h, pos_w, hparams.rope_theta); Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); struct ggml_tensor * K = ggml_mul_mat(ctx0, model.layers[il].k_w, cur); K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches); K = build_rope_2d(ctx0, K, pos_h, pos_w, hparams.rope_theta); K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); struct ggml_tensor * V = ggml_mul_mat(ctx0, model.layers[il].v_w, cur); V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches); V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head); KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches); cur = ggml_mul_mat(ctx0, model.layers[il].o_w, cur); } // re-add the layer input, e.g., residual cur = ggml_add(ctx0, cur, embeddings); embeddings = cur; // embeddings = residual, cur = hidden_states // pre-ffn norm cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.layers[il].ln_2_w); // feed-forward { ggml_tensor * gate_proj = ggml_mul_mat(ctx0, model.layers[il].ff_gate_w, cur); ggml_tensor * up_proj = ggml_mul_mat(ctx0, model.layers[il].ff_up_w, cur); gate_proj = ggml_silu(ctx0, gate_proj); // pixtral uses silu cur = ggml_mul(ctx0, up_proj, gate_proj); cur = ggml_mul_mat(ctx0, model.layers[il].ff_down_w, cur); } // residual 2 cur = ggml_add(ctx0, embeddings, cur); embeddings = cur; } // LlavaMultiModalProjector (with GELU activation) { embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_1_b); embeddings = ggml_gelu(ctx0, embeddings); embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); } // arrangement of the [IMG_BREAK] token { // not efficient, but works // the trick is to view the embeddings as a 3D tensor with shape [hidden_size, n_patches_per_row, n_rows] // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension // after the concatenation, we have a tensor with shape [hidden_size, n_patches_per_row + 1, n_rows] const int n_embd_text = embeddings->ne[0]; const int n_tokens_output = num_patches + n_patches_y - 1; // one [IMG_BREAK] per row, except the last row ggml_tensor * cur = ggml_reshape_3d(ctx0, embeddings, n_embd_text, n_patches_x, n_patches_y); ggml_tensor * tok = ggml_new_tensor_3d(ctx0, embeddings->type, n_embd_text, 1, n_patches_y); tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor tok = ggml_add(ctx0, tok, model.token_embd_img_break); cur = ggml_concat(ctx0, cur, tok, 1); embeddings = ggml_view_2d(ctx0, cur, n_embd_text, n_tokens_output, ggml_row_size(cur->type, n_embd_text), 0); } // build the graph ggml_build_forward_expand(gf, embeddings); return gf; } static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_image_f32_batch & imgs) { const auto & model = ctx->vision_model; const auto & hparams = model.hparams; const int image_size_width = imgs.entries[0]->nx; const int image_size_height = imgs.entries[0]->ny; const bool use_window_attn = hparams.n_wa_pattern > 0; const int n_wa_pattern = hparams.n_wa_pattern; const int patch_size = hparams.patch_size; const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int patches_w = image_size_width / patch_size; const int patches_h = image_size_height / patch_size; const int num_positions = num_patches + (model.class_embedding ? 1 : 0); const int num_position_ids = num_positions * 4; // m-rope requires 4 dim per position const int hidden_size = hparams.hidden_size; const int n_head = hparams.n_head; const int d_head = hidden_size / n_head; const int n_layer = hparams.n_layer; const float eps = hparams.eps; int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4}; const int batch_size = imgs.entries.size(); GGML_ASSERT(batch_size == 1); struct ggml_init_params params = { /*.mem_size =*/ ctx->buf_compute_meta.size(), /*.mem_buffer =*/ ctx->buf_compute_meta.data(), /*.no_alloc =*/ true, }; ggml_context_ptr ctx0_ptr(ggml_init(params)); auto ctx0 = ctx0_ptr.get(); struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size); ggml_set_name(inp_raw, "inp_raw"); ggml_set_input(inp_raw); struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1); GGML_ASSERT(image_size_width % (patch_size * 2) == 0); GGML_ASSERT(image_size_height % (patch_size * 2) == 0); auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1); inp = ggml_add(ctx0, inp, inp_1); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b] inp = ggml_reshape_4d( ctx0, inp, hidden_size * 2, patches_w / 2, patches_h, batch_size); inp = ggml_reshape_4d( ctx0, inp, hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2)); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3)); inp = ggml_reshape_3d( ctx0, inp, hidden_size, patches_w * patches_h, batch_size); if (model.patch_bias) { // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp)); inp = ggml_add(ctx0, inp, model.patch_bias); } struct ggml_tensor * embeddings = inp; struct ggml_tensor * window_mask = nullptr; struct ggml_tensor * window_idx = nullptr; struct ggml_tensor * inv_window_idx = nullptr; struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids); ggml_set_name(positions, "positions"); ggml_set_input(positions); // pre-layernorm if (model.pre_ln_w) { embeddings = ggml_rms_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "pre_ln"); embeddings = ggml_mul(ctx0, embeddings, model.pre_ln_w); } if (use_window_attn) { // handle window attention inputs inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4); ggml_set_name(inv_window_idx, "inv_window_idx"); ggml_set_input(inv_window_idx); // mask for window attention window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, num_positions, num_positions); ggml_set_name(window_mask, "window_mask"); ggml_set_input(window_mask); // embeddings shape: [hidden_size, patches_w * patches_h, batch_size] GGML_ASSERT(batch_size == 1); embeddings = ggml_reshape_2d(ctx0, embeddings, hidden_size * 4, patches_w * patches_h * batch_size / 4); embeddings = ggml_get_rows(ctx0, embeddings, inv_window_idx); embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, patches_w * patches_h, batch_size); } // loop over layers for (int il = 0; il < n_layer; il++) { struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states // rmsnorm1 cur = ggml_rms_norm(ctx0, cur, eps); cur = ggml_mul(ctx0, cur, model.layers[il].ln_1_w); // self-attention { struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b); Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size); Q = ggml_rope_multi( ctx0, Q, positions, nullptr, d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1); Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size); struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b); K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); K = ggml_rope_multi( ctx0, K, positions, nullptr, d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1); K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b); V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true; if (full_attn) { KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f); } else { KQ = ggml_soft_max_ext(ctx0, KQ, window_mask, 1.0f / sqrtf((float)d_head), 0.0f); } struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size); KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size); } // attention output cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b); // re-add the layer input, e.g., residual cur = ggml_add(ctx0, cur, embeddings); embeddings = cur; // embeddings = residual, cur = hidden_states // rms norm2 cur = ggml_rms_norm(ctx0, cur, eps); cur = ggml_mul(ctx0, cur, model.layers[il].ln_2_w); // mlp // ffn_up auto cur_up = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); cur_up = ggml_add(ctx0, cur_up, model.layers[il].ff_o_b); auto cur_gate = ggml_mul_mat(ctx0, model.layers[il].ff_g_w, cur); cur_gate = ggml_add(ctx0, cur_gate, model.layers[il].ff_g_b); // TODO : only 2 of these 3 are actually used, should we remove one of them? if (ctx->use_gelu) { cur_gate = ggml_gelu_inplace(ctx0, cur_gate); } else if (ctx->use_silu) { cur_gate = ggml_silu_inplace(ctx0, cur_gate); } else { cur_gate = ggml_gelu_quick_inplace(ctx0, cur_gate); } cur = ggml_mul(ctx0, cur_gate, cur_up); // ffn_down cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b); // residual 2 cur = ggml_add(ctx0, embeddings, cur); embeddings = cur; } // post-layernorm if (model.post_ln_w) { embeddings = ggml_rms_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "post_ln"); embeddings = ggml_mul(ctx0, embeddings, model.post_ln_w); } embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size); embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); // GELU activation embeddings = ggml_gelu(ctx0, embeddings); // Second linear layer embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_1_b); if (use_window_attn) { window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4); ggml_set_name(window_idx, "window_idx"); ggml_set_input(window_idx); // embeddings shape: [hidden_size, patches_w * patches_h, batch_size] GGML_ASSERT(batch_size == 1); embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4); embeddings = ggml_get_rows(ctx0, embeddings, window_idx); embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4, batch_size); } // build the graph ggml_build_forward_expand(gf, embeddings); return gf; } static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) { const auto & model = ctx->vision_model; const auto & hparams = model.hparams; const int image_size = hparams.image_size; int image_size_width = image_size; int image_size_height = image_size; if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) { LOG_DBG("%s: %d %d\n", __func__, load_image_size.width, load_image_size.height); image_size_width = load_image_size.width; image_size_height = load_image_size.height; if (is_inf) { image_size_width = imgs.entries[0]->nx; image_size_height = imgs.entries[0]->ny; } } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) { // use the image's native resolution when image is avaible if (is_inf) { // if (imgs->data->nx && imgs->data->ny) { image_size_width = imgs.entries[0]->nx; image_size_height = imgs.entries[0]->ny; } } const int patch_size = hparams.patch_size; const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int patches_w = image_size_width / patch_size; const int patches_h = image_size_height / patch_size; const int num_positions = num_patches + (model.class_embedding ? 1 : 0); const int num_position_ids = ctx->proj_type == PROJECTOR_TYPE_QWEN2VL ? num_positions * 4 : num_positions; const int hidden_size = hparams.hidden_size; const int n_head = hparams.n_head; const int d_head = hidden_size / n_head; const float eps = hparams.eps; int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4}; const int batch_size = imgs.entries.size(); if (ctx->has_llava_projector || ctx->proj_type == PROJECTOR_TYPE_MINICPMV || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) { GGML_ASSERT(batch_size == 1); } struct ggml_init_params params = { /*.mem_size =*/ ctx->buf_compute_meta.size(), /*.mem_buffer =*/ ctx->buf_compute_meta.data(), /*.no_alloc =*/ true, }; ggml_context_ptr ctx0_ptr(ggml_init(params)); auto ctx0 = ctx0_ptr.get(); struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size); ggml_set_name(inp_raw, "inp_raw"); ggml_set_input(inp_raw); struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1); if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) { GGML_ASSERT(image_size_width % (patch_size * 2) == 0); GGML_ASSERT(image_size_height % (patch_size * 2) == 0); auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1); inp = ggml_add(ctx0, inp, inp_1); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b] inp = ggml_reshape_4d( ctx0, inp, hidden_size * 2, patches_w / 2, patches_h, batch_size); inp = ggml_reshape_4d( ctx0, inp, hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2)); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3)); inp = ggml_reshape_3d( ctx0, inp, hidden_size, patches_w * patches_h, batch_size); } else { inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3)); } if (model.patch_bias) { // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp)); inp = ggml_add(ctx0, inp, model.patch_bias); } struct ggml_tensor * embeddings = inp; struct ggml_tensor * pos_embed = nullptr; // concat class_embeddings and patch_embeddings if (model.class_embedding) { embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); embeddings = ggml_scale(ctx0, embeddings, 0.0f); // set to all zeros embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); embeddings = ggml_acc(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); } struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids); ggml_set_name(positions, "positions"); ggml_set_input(positions); if (ctx->proj_type != PROJECTOR_TYPE_QWEN2VL) { // qwen2vl does NOT use learned position embeddings embeddings = ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions)); } if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) { int pos_w = image_size_width/patch_size; int pos_h = image_size_height/patch_size; int n_output_dim = clip_n_mmproj_embd(ctx); pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, pos_w * pos_h, 1); ggml_set_name(pos_embed, "pos_embed"); ggml_set_input(pos_embed); } // pre-layernorm if (model.pre_ln_w) { embeddings = ggml_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "pre_ln"); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b); } std::vector embedding_stack; const auto & vision_feature_layer = hparams.vision_feature_layer; // loop over layers for (int il = 0; il < ctx->max_feature_layer; il++) { struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states // If this is an embedding feature layer, save the output. // NOTE: 0 index here refers to the input to the encoder. if (vision_feature_layer.find(il) != vision_feature_layer.end()) { embedding_stack.push_back(embeddings); } //const size_t nb_q_w = model.layers[il].q_w->nb[0]; // layernorm1 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b); } // self-attention { struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b); Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size); if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) { Q = ggml_rope_multi( ctx0, Q, positions, nullptr, d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1); } Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size); struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b); K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) { K = ggml_rope_multi( ctx0, K, positions, nullptr, d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1); } K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b); V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size); KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size); } // attention output cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b); // re-add the layer input, e.g., residual cur = ggml_add(ctx0, cur, embeddings); embeddings = cur; // embeddings = residual, cur = hidden_states // layernorm2 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b); } cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b); if (ctx->use_gelu) { cur = ggml_gelu_inplace(ctx0, cur); } else if (ctx->use_silu) { cur = ggml_silu_inplace(ctx0, cur); } else { cur = ggml_gelu_quick_inplace(ctx0, cur); } cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b); // residual 2 cur = ggml_add(ctx0, embeddings, cur); embeddings = cur; } // post-layernorm if (model.post_ln_w) { embeddings = ggml_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "post_ln"); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b); } // final layer is a vision feature layer if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) { embedding_stack.push_back(embeddings); } // If feature layers are explicitly set, stack them (if we have multiple) if (!embedding_stack.empty()) { embeddings = embedding_stack[0]; for (size_t i = 1; i < embedding_stack.size(); i++) { embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0); } } // llava projector if (ctx->has_llava_projector) { embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches); ggml_set_name(patches, "patches"); ggml_set_input(patches); // shape [1, 576, 1024] // ne is whcn, ne = [1024, 576, 1, 1] embeddings = ggml_get_rows(ctx0, embeddings, patches); // print_tensor_info(embeddings, "embeddings"); // llava projector if (ctx->proj_type == PROJECTOR_TYPE_MLP) { embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); embeddings = ggml_gelu(ctx0, embeddings); if (model.mm_2_w) { embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); } } else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false); // First LayerNorm embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w), model.mm_1_b); // GELU activation embeddings = ggml_gelu(ctx0, embeddings); // Second linear layer embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_3_b); // Second LayerNorm embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w), model.mm_4_b); } else if (ctx->proj_type == PROJECTOR_TYPE_LDP) { // MobileVLM projector int n_patch = 24; struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings); mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b); mlp_1 = ggml_gelu(ctx0, mlp_1); struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1); mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b); // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1] // block 1 struct ggml_tensor * block_1 = nullptr; { // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24] mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3)); mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]); // stride = 1, padding = 1, bias is nullptr block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1); // layer norm // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] // hardswish struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] // pointwise conv block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b); block_1 = ggml_relu(ctx0, block_1); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b); block_1 = ggml_hardsigmoid(ctx0, block_1); // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1] block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); block_1 = ggml_mul(ctx0, block_1_hw, block_1); int w = block_1->ne[0], h = block_1->ne[1]; block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1); block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] // residual block_1 = ggml_add(ctx0, mlp_3, block_1); } // block_2 { // stride = 2 block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1); // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] // layer norm block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] // hardswish struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); // not sure the parameters is right for globalAvgPooling block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] // pointwise conv block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b); block_1 = ggml_relu(ctx0, block_1); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b); block_1 = ggml_hardsigmoid(ctx0, block_1); // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); block_1 = ggml_mul(ctx0, block_1_hw, block_1); int w = block_1->ne[0], h = block_1->ne[1]; block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1); block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b); block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]); // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1] } embeddings = block_1; } else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) { int n_patch = 24; struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings); mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b); mlp_0 = ggml_gelu(ctx0, mlp_0); struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0); mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b); // mlp_2 ne = [2048, 576, 1, 1] // // AVG Pool Layer 2*2, strides = 2 mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3)); // mlp_2 ne = [576, 2048, 1, 1] mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]); // mlp_2 ne [24, 24, 2048, 1] mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0); // weight ne = [3, 3, 2048, 1] struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1); peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3)); peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b); mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3)); peg_0 = ggml_add(ctx0, peg_0, mlp_2); peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]); embeddings = peg_0; } else { GGML_ABORT("fatal error"); } } // minicpmv projector else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) { struct ggml_tensor * q = model.mm_model_query; { // layernorm q = ggml_norm(ctx0, q, eps); q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b); } struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings); { // layernorm v = ggml_norm(ctx0, v, eps); v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b); } struct ggml_tensor * k; { // position // q = ggml_add(ctx0, q, model.mm_model_pos_embed); k = ggml_add(ctx0, v, pos_embed); } { // attention int hidden_size = clip_n_mmproj_embd(ctx); const int d_head = 128; int n_head = hidden_size/d_head; int num_query = 96; if (ctx->minicpmv_version == 2) { num_query = 96; } else if (ctx->minicpmv_version == 3) { num_query = 64; } else if (ctx->minicpmv_version == 4) { num_query = 64; } struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b); struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b); struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b); // permute Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size); Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size); K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size); KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size); embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b); } { // layernorm embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b); } embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings); } // glm projector else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) { size_t gridsz = (size_t)sqrt(embeddings->ne[1]); embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3)); embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]); embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1); embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size); embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3)); embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b); // GLU { embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings); embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b); embeddings = ggml_gelu_inplace(ctx0, embeddings); struct ggml_tensor * x = embeddings; embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings); x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x); embeddings = ggml_silu_inplace(ctx0, embeddings); embeddings = ggml_mul(ctx0, embeddings,x); embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings); } } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) { embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size); embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); // GELU activation embeddings = ggml_gelu(ctx0, embeddings); // Second linear layer embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_1_b); } // build the graph ggml_build_forward_expand(gf, embeddings); return gf; } static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) { ggml_cgraph * res; switch (ctx->proj_type) { case PROJECTOR_TYPE_GEMMA3: case PROJECTOR_TYPE_IDEFICS3: { GGML_ASSERT(imgs.entries.size() == 1); res = clip_image_build_graph_siglip(ctx, *imgs.entries[0]); } break; case PROJECTOR_TYPE_PIXTRAL: { GGML_ASSERT(imgs.entries.size() == 1); res = clip_image_build_graph_pixtral(ctx, *imgs.entries[0]); } break; case PROJECTOR_TYPE_QWEN25VL: { res = clip_image_build_graph_qwen25vl(ctx, imgs); } break; default: { // TODO: we should have one build_* function per model res = clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf); } break; } return res; } struct clip_model_loader { ggml_context_ptr ctx_meta; gguf_context_ptr ctx_gguf; clip_ctx & ctx_clip; std::string fname; size_t model_size = 0; // in bytes // TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) { struct ggml_context * meta = nullptr; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &meta, }; ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params)); if (!ctx_gguf.get()) { throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname)); } ctx_meta.reset(meta); const int n_tensors = gguf_get_n_tensors(ctx_gguf.get()); // print gguf info { std::string name; get_string(KEY_NAME, name, false); std::string description; get_string(KEY_DESCRIPTION, description, false); LOG_INF("%s: model name: %s\n", __func__, name.c_str()); LOG_INF("%s: description: %s\n", __func__, description.c_str()); LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get())); LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get())); LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors); LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get())); LOG_INF("\n"); } // tensors { for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx_gguf.get(), i); const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i); enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i); struct ggml_tensor * cur = ggml_get_tensor(meta, name); size_t tensor_size = ggml_nbytes(cur); model_size += tensor_size; LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n", __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type)); } } } void load_hparams() { auto & hparams = ctx_clip.vision_model.hparams; // projector type std::string proj_type; { get_string(KEY_PROJ_TYPE, proj_type, false); if (!proj_type.empty()) { ctx_clip.proj_type = clip_projector_type_from_string(proj_type); } if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) { throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str())); } } // other hparams { get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false); get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false); get_bool(KEY_USE_SILU, ctx_clip.use_silu, false); get_u32(KEY_N_EMBD, hparams.hidden_size); get_u32(KEY_N_HEAD, hparams.n_head); get_u32(KEY_N_FF, hparams.n_intermediate); get_u32(KEY_N_BLOCK, hparams.n_layer); get_u32(KEY_PROJ_DIM, hparams.projection_dim); get_f32(KEY_LAYER_NORM_EPS, hparams.eps); get_u32(KEY_IMAGE_SIZE, hparams.image_size); get_u32(KEY_PATCH_SIZE, hparams.patch_size); get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false); get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false); ctx_clip.has_llava_projector = ctx_clip.proj_type == PROJECTOR_TYPE_MLP || ctx_clip.proj_type == PROJECTOR_TYPE_MLP_NORM || ctx_clip.proj_type == PROJECTOR_TYPE_LDP || ctx_clip.proj_type == PROJECTOR_TYPE_LDPV2; { std::string mm_patch_merge_type; get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false); if (mm_patch_merge_type == "spatial_unpad") { hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD; } } { int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN); int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD); GGML_ASSERT(idx_mean >= 0 && "image_mean not found"); GGML_ASSERT(idx_std >= 0 && "image_std not found"); const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean); const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std); for (int i = 0; i < 3; ++i) { ctx_clip.image_mean[i] = mean_data[i]; ctx_clip.image_std[i] = std_data[i]; } } // Load the vision feature layer indices if they are explicitly provided; // if multiple vision feature layers are present, the values will be concatenated // to form the final visual features. // NOTE: gguf conversions should standardize the values of the vision feature layer to // be non-negative, since we use -1 to mark values as unset here. std::vector vision_feature_layer; get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false); // convert std::vector to std::unordered_set for (auto & layer : vision_feature_layer) { hparams.vision_feature_layer.insert(layer); } // Calculate the deepest feature layer based on hparams and projector type // NOTE: This is only used by build_graph_legacy() { // Get the index of the second to last layer; this is the default for models that have a llava projector int n_layer = hparams.n_layer - 1; int deepest_feature_layer = -1; if (ctx_clip.proj_type == PROJECTOR_TYPE_MINICPMV || ctx_clip.proj_type == PROJECTOR_TYPE_GLM_EDGE || ctx_clip.proj_type == PROJECTOR_TYPE_QWEN2VL || ctx_clip.proj_type == PROJECTOR_TYPE_QWEN25VL) { n_layer += 1; } // If we set explicit vision feature layers, only go up to the deepest one // NOTE: only used by granite-vision models for now for (const auto & feature_layer : hparams.vision_feature_layer) { if (feature_layer > deepest_feature_layer) { deepest_feature_layer = feature_layer; } } ctx_clip.max_feature_layer = deepest_feature_layer < 0 ? n_layer : deepest_feature_layer; } // model-specific params switch (ctx_clip.proj_type) { case PROJECTOR_TYPE_MINICPMV: { if (ctx_clip.minicpmv_version == 0) { ctx_clip.minicpmv_version = 2; // default to 2 if not set } } break; case PROJECTOR_TYPE_IDEFICS3: { get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false); } break; case PROJECTOR_TYPE_PIXTRAL: { hparams.rope_theta = 10000.0f; } break; case PROJECTOR_TYPE_QWEN25VL: { get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern); } break; default: break; } LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str()); LOG_INF("%s: has_llava_proj: %d\n", __func__, ctx_clip.has_llava_projector); LOG_INF("%s: minicpmv_version: %d\n", __func__, ctx_clip.minicpmv_version); LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor); LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern); LOG_INF("%s: use_silu: %d\n", __func__, ctx_clip.use_silu); LOG_INF("%s: use_gelu: %d\n", __func__, ctx_clip.use_gelu); LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0); LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0); } } void load_tensors() { std::map tensor_offset; std::vector tensors_to_load; // get offsets for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) { const char * name = gguf_get_tensor_name(ctx_gguf.get(), i); tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i); } // create data context struct ggml_init_params params = { /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ctx_clip.ctx_data.reset(ggml_init(params)); if (!ctx_clip.ctx_data) { throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__)); } // helper function auto get_tensor = [&](const std::string & name, bool required = true) { struct ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str()); if (!cur && required) { throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str())); } if (cur) { tensors_to_load.push_back(cur); // add tensors to context struct ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur); ggml_set_name(data_tensor, cur->name); cur = data_tensor; } return cur; }; auto & vision_model = ctx_clip.vision_model; vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false); vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, "v", "weight"), false); vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, "v", "bias"), false); vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, "v", "weight"), false); vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, "v", "bias"), false); vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false); vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false); vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false); vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false); // layers vision_model.layers.resize(vision_model.hparams.n_layer); for (int il = 0; il < vision_model.hparams.n_layer; ++il) { auto & layer = vision_model.layers[il]; layer.k_w = get_tensor(string_format(TN_ATTN_K, "v", il, "weight")); layer.q_w = get_tensor(string_format(TN_ATTN_Q, "v", il, "weight")); layer.v_w = get_tensor(string_format(TN_ATTN_V, "v", il, "weight")); layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight")); layer.ln_1_w = get_tensor(string_format(TN_LN_1, "v", il, "weight"), false); layer.ln_2_w = get_tensor(string_format(TN_LN_2, "v", il, "weight"), false); layer.k_b = get_tensor(string_format(TN_ATTN_K, "v", il, "bias"), false); layer.q_b = get_tensor(string_format(TN_ATTN_Q, "v", il, "bias"), false); layer.v_b = get_tensor(string_format(TN_ATTN_V, "v", il, "bias"), false); layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "bias"), false); layer.ln_1_b = get_tensor(string_format(TN_LN_1, "v", il, "bias"), false); layer.ln_2_b = get_tensor(string_format(TN_LN_2, "v", il, "bias"), false); // new naming layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, "v", il, "weight")); layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, "v", il, "bias"), false); layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, "v", il, "weight"), false); layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, "v", il, "bias"), false); layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, "v", il, "weight")); layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, "v", il, "bias"), false); // legacy naming (the in and out is reversed! don't ask me why) layer.ff_i_w = layer.ff_down_w; layer.ff_o_w = layer.ff_up_w; layer.ff_g_w = layer.ff_gate_w; layer.ff_i_b = layer.ff_down_b; layer.ff_o_b = layer.ff_up_b; layer.ff_g_b = layer.ff_gate_b; } switch (ctx_clip.proj_type) { case PROJECTOR_TYPE_MLP: case PROJECTOR_TYPE_MLP_NORM: { // LLaVA projection vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false); vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false); // Yi-type llava vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false); vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false); // missing in Yi-type llava vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false); vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false); // Yi-type llava vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false); vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false); vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false); vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false); if (vision_model.mm_3_w) { // TODO: this is a hack to support Yi-type llava ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM; } vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false); } break; case PROJECTOR_TYPE_LDP: { // MobileVLM projection vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight")); vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias")); vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight")); vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias")); vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight")); vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight")); vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias")); vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight")); vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias")); vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight")); vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias")); vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight")); vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight")); vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias")); vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight")); vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight")); vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias")); vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight")); vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias")); vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight")); vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias")); vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); } break; case PROJECTOR_TYPE_LDPV2: { // MobilVLM_V2 projection vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight")); vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias")); vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight")); vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias")); vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight")); vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias")); } break; case PROJECTOR_TYPE_MINICPMV: { // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD); vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K); vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY); vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ); vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ); vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight")); vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight")); vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight")); vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias")); vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias")); vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias")); vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight")); vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias")); vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight")); vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias")); vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight")); vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias")); vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight")); vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias")); } break; case PROJECTOR_TYPE_GLM_EDGE: { vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight")); vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias")); vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR,"weight")); vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"weight")); vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"bias")); vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H,"weight")); vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE,"weight")); vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight")); } break; case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN25VL: { vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight")); vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias")); vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias")); } break; case PROJECTOR_TYPE_GEMMA3: { vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ); vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N); } break; case PROJECTOR_TYPE_IDEFICS3: { vision_model.projection = get_tensor(TN_MM_PROJECTOR); } break; case PROJECTOR_TYPE_PIXTRAL: { vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight")); vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias")); vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias")); // [IMG_BREAK] token embedding vision_model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK); } break; default: GGML_ASSERT(false && "unknown projector type"); } // load data { std::vector read_buf; #ifdef _WIN32 int wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, NULL, 0); if (!wlen) { throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__)); } wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t)); wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, wbuf, wlen); if (!wlen) { free(wbuf); throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__)); } #if __GLIBCXX__ int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY); __gnu_cxx::stdio_filebuf buffer(fd, std::ios_base::in); std::istream fin(&buffer); #else // MSVC // unused in our current build auto fin = std::ifstream(wbuf, std::ios::binary); #endif free(wbuf); #else auto fin = std::ifstream(fname, std::ios::binary); #endif if (!fin) { throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str())); } // alloc memory and offload data ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend); ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft)); ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS); for (auto & t : tensors_to_load) { struct ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name); const size_t offset = tensor_offset[t->name]; fin.seekg(offset, std::ios::beg); if (!fin) { throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name)); } size_t num_bytes = ggml_nbytes(cur); if (ggml_backend_buft_is_host(buft)) { // for the CPU and Metal backend, we can read directly into the tensor fin.read(reinterpret_cast(cur->data), num_bytes); } else { // read into a temporary buffer first, then copy to device memory read_buf.resize(num_bytes); fin.read(reinterpret_cast(read_buf.data()), num_bytes); ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes); } } #if defined(_WIN32) && defined(__GLIBCXX__) close(fd); #else fin.close(); #endif LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str()); } } void alloc_compute_meta() { ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead()); // create a fake batch clip_image_f32_batch batch; clip_image_f32_ptr img(clip_image_f32_init()); clip_image_size image_size; image_size.width = ctx_clip.vision_model.hparams.image_size; image_size.height = ctx_clip.vision_model.hparams.image_size; img->nx = image_size.width; img->ny = image_size.height; img->buf.resize(image_size.width * image_size.height * 3); batch.entries.push_back(std::move(img)); ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch, image_size, false); ggml_backend_sched_reserve(ctx_clip.sched.get(), gf); for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) { ggml_backend_t backend = ctx_clip.backend_ptrs[i]; ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i]; size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend); if (size > 1) { LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__, ggml_backend_buft_name(buft), size / 1024.0 / 1024.0); } } } void get_bool(const std::string & key, bool & output, bool required = true) { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) throw std::runtime_error("Key not found: " + key); return; } output = gguf_get_val_bool(ctx_gguf.get(), i); } void get_i32(const std::string & key, int & output, bool required = true) { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) throw std::runtime_error("Key not found: " + key); return; } output = gguf_get_val_i32(ctx_gguf.get(), i); } void get_u32(const std::string & key, int & output, bool required = true) { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) throw std::runtime_error("Key not found: " + key); return; } output = gguf_get_val_u32(ctx_gguf.get(), i); } void get_f32(const std::string & key, float & output, bool required = true) { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) throw std::runtime_error("Key not found: " + key); return; } output = gguf_get_val_f32(ctx_gguf.get(), i); } void get_string(const std::string & key, std::string & output, bool required = true) { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) throw std::runtime_error("Key not found: " + key); return; } output = std::string(gguf_get_val_str(ctx_gguf.get(), i)); } void get_arr_int(const std::string & key, std::vector & output, bool required = true) { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) throw std::runtime_error("Key not found: " + key); return; } int n = gguf_get_arr_n(ctx_gguf.get(), i); output.resize(n); const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i); for (int i = 0; i < n; ++i) { output[i] = values[i]; } } }; // read and create ggml_context containing the tensors and their data struct clip_ctx * clip_model_load(const char * fname, const int verbosity) { return clip_init(fname, clip_context_params{ /* use_gpu */ true, /* verbosity */ static_cast(verbosity), }); } struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) { g_logger_state.verbosity_thold = ctx_params.verbosity; clip_ctx * ctx_clip = new clip_ctx(ctx_params); try { clip_model_loader loader(fname, *ctx_clip); loader.load_hparams(); loader.load_tensors(); loader.alloc_compute_meta(); } catch (const std::exception & e) { LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what()); delete ctx_clip; return nullptr; } return ctx_clip; } void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) { ctx_clip->load_image_size = *load_image_size; // copy } struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) { return &ctx_clip->load_image_size; } struct clip_image_size * clip_image_size_init() { struct clip_image_size * load_image_size = new struct clip_image_size(); load_image_size->width = 448; load_image_size->height = 448; return load_image_size; } struct clip_image_u8 * clip_image_u8_init() { return new clip_image_u8(); } struct clip_image_f32 * clip_image_f32_init() { return new clip_image_f32(); } struct clip_image_f32_batch * clip_image_f32_batch_init() { return new clip_image_f32_batch(); } unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) { if (nx) *nx = img->nx; if (ny) *ny = img->ny; return img->buf.data(); } void clip_image_size_free(struct clip_image_size * load_image_size) { if (load_image_size == nullptr) { return; } delete load_image_size; } void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; } void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; } void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; } void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; } size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) { return batch->entries.size(); } size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) { if (idx < 0 || idx >= (int)batch->entries.size()) { LOG_ERR("%s: invalid index %d\n", __func__, idx); return 0; } return batch->entries[idx]->nx; } size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) { if (idx < 0 || idx >= (int)batch->entries.size()) { LOG_ERR("%s: invalid index %d\n", __func__, idx); return 0; } return batch->entries[idx]->ny; } clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) { if (idx < 0 || idx >= (int)batch->entries.size()) { LOG_ERR("%s: invalid index %d\n", __func__, idx); return nullptr; } return batch->entries[idx].get(); } void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) { img->nx = nx; img->ny = ny; img->buf.resize(3 * nx * ny); memcpy(img->buf.data(), rgb_pixels, img->buf.size()); } bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) { int nx, ny, nc; auto * data = stbi_load(fname, &nx, &ny, &nc, 3); if (!data) { LOG_ERR("%s: failed to load image '%s'\n", __func__, fname); return false; } clip_build_img_from_pixels(data, nx, ny, img); stbi_image_free(data); return true; } bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) { int nx, ny, nc; auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3); if (!data) { LOG_ERR("%s: failed to decode image bytes\n", __func__); return false; } clip_build_img_from_pixels(data, nx, ny, img); stbi_image_free(data); return true; } // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) { dst.nx = src.nx; dst.ny = src.ny; dst.buf.resize(src.buf.size()); // TODO @ngxson : seems like this could be done more efficiently on cgraph for (size_t i = 0; i < src.buf.size(); ++i) { int c = i % 3; // rgb dst.buf[i] = (static_cast(src.buf[i]) / 255.0f - mean[c]) / std[c]; } } // set of tools to manupulate images // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv struct image_manipulation { // Bilinear resize function static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) { dst.nx = target_width; dst.ny = target_height; dst.buf.resize(3 * target_width * target_height); float x_ratio = static_cast(src.nx - 1) / target_width; float y_ratio = static_cast(src.ny - 1) / target_height; for (int y = 0; y < target_height; y++) { for (int x = 0; x < target_width; x++) { float px = x_ratio * x; float py = y_ratio * y; int x_floor = static_cast(px); int y_floor = static_cast(py); float x_lerp = px - x_floor; float y_lerp = py - y_floor; for (int c = 0; c < 3; c++) { float top = lerp( static_cast(src.buf[3 * (y_floor * src.nx + x_floor) + c]), static_cast(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]), x_lerp ); float bottom = lerp( static_cast(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]), static_cast(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]), x_lerp ); dst.buf[3 * (y * target_width + x) + c] = static_cast(lerp(top, bottom, y_lerp)); } } } } // Bicubic resize function // part of image will be cropped if the aspect ratio is different static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) { const int nx = img.nx; const int ny = img.ny; dst.nx = target_width; dst.ny = target_height; dst.buf.resize(3 * target_width * target_height); float Cc; float C[5]; float d0, d2, d3, a0, a1, a2, a3; int i, j, k, jj; int x, y; float dx, dy; float tx, ty; tx = (float)nx / (float)target_width; ty = (float)ny / (float)target_height; // Bicubic interpolation; adapted from ViT.cpp, inspired from : // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36 // -> https://en.wikipedia.org/wiki/Bicubic_interpolation for (i = 0; i < target_height; i++) { for (j = 0; j < target_width; j++) { x = (int)(tx * j); y = (int)(ty * i); dx = tx * j - x; dy = ty * i - y; for (k = 0; k < 3; k++) { for (jj = 0; jj <= 3; jj++) { d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx; d0 = C[0] - C[1]; d2 = C[2] - C[1]; d3 = C[3] - C[1]; a0 = C[1]; a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy; const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f); dst.buf[(i * target_width + j) * 3 + k] = float(Cc2); } } } } return true; } // llava-1.6 type of resize_and_pad // if the ratio is not 1:1, padding with pad_color will be applied // pad_color is single channel, default is 0 (black) static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array pad_color = {0, 0, 0}) { int target_width = target_resolution.width; int target_height = target_resolution.height; float scale_w = static_cast(target_width) / image.nx; float scale_h = static_cast(target_height) / image.ny; int new_width, new_height; if (scale_w < scale_h) { new_width = target_width; new_height = std::min(static_cast(std::ceil(image.ny * scale_w)), target_height); } else { new_height = target_height; new_width = std::min(static_cast(std::ceil(image.nx * scale_h)), target_width); } clip_image_u8 resized_image; bicubic_resize(image, resized_image, new_width, new_height); clip_image_u8 padded_image; padded_image.nx = target_width; padded_image.ny = target_height; padded_image.buf.resize(3 * target_width * target_height); // Fill the padded image with the fill color for (size_t i = 0; i < padded_image.buf.size(); i += 3) { padded_image.buf[i] = pad_color[0]; padded_image.buf[i + 1] = pad_color[1]; padded_image.buf[i + 2] = pad_color[2]; } // Calculate padding offsets int pad_x = (target_width - new_width) / 2; int pad_y = (target_height - new_height) / 2; // Copy the resized image into the center of the padded buffer for (int y = 0; y < new_height; ++y) { for (int x = 0; x < new_width; ++x) { for (int c = 0; c < 3; ++c) { padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c]; } } } dst = std::move(padded_image); } static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) { dst.nx = w; dst.ny = h; dst.buf.resize(3 * w * h); for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { int src_idx = 3 * ((y + i)*image.nx + (x + j)); int dst_idx = 3 * (i*w + j); dst.buf[dst_idx] = image.buf[src_idx]; dst.buf[dst_idx + 1] = image.buf[src_idx + 1]; dst.buf[dst_idx + 2] = image.buf[src_idx + 2]; } } } // calculate the size of the **resized** image, while preserving the aspect ratio // the calculated size will be aligned to the nearest multiple of align_size // if H or W size is larger than max_dimension, it will be resized to max_dimension static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) { if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) { return {0, 0}; } float scale = std::min(1.0f, std::min(static_cast(max_dimension) / inp_size.width, static_cast(max_dimension) / inp_size.height)); float target_width_f = static_cast(inp_size.width) * scale; float target_height_f = static_cast(inp_size.height) * scale; int aligned_width = GGML_PAD((int)target_width_f, align_size); int aligned_height = GGML_PAD((int)target_height_f, align_size); return {aligned_width, aligned_height}; } private: static inline int clip(int x, int lower, int upper) { return std::max(lower, std::min(x, upper)); } // Linear interpolation between two points static inline float lerp(float s, float e, float t) { return s + (e - s) * t; } }; /** * implementation of LLaVA-UHD: * - https://arxiv.org/pdf/2403.11703 * - https://github.com/thunlp/LLaVA-UHD * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118 * * overview: * - an image always have a single overview (downscaled image) * - an image can have 0 or multiple slices, depending on the image size * - each slice can then be considered as a separate image * * for example: * * [overview] --> [slice 1] --> [slice 2] * | | * +--> [slice 3] --> [slice 4] */ struct llava_uhd { struct slice_coordinates { int x; int y; clip_image_size size; }; struct slice_instructions { clip_image_size overview_size; // size of downscaled image clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size) clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices std::vector slices; bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6) }; static int get_max_slices(struct clip_ctx * ctx) { if (clip_is_minicpmv(ctx)) { return 9; } return 0; } static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) { slice_instructions res; const int patch_size = clip_get_patch_size(ctx); const int slice_size = clip_get_image_size(ctx); const int max_slice_nums = get_max_slices(ctx); const int original_width = original_size.width; const int original_height = original_size.height; const float log_ratio = log((float)original_width / original_height); const float ratio = (float)original_width * original_height / (slice_size * slice_size); const int multiple = fmin(ceil(ratio), max_slice_nums); const bool has_slices = (multiple > 1); const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty(); if (has_pinpoints) { // has pinpoints, use them to calculate the grid size (e.g. llava-1.6) auto refine_size = llava_uhd::select_best_resolution( ctx->vision_model.hparams.image_grid_pinpoints, original_size); res.overview_size = clip_image_size{slice_size, slice_size}; res.refined_size = refine_size; res.grid_size = clip_image_size{0, 0}; res.padding_refined = true; for (int y = 0; y < refine_size.height; y += slice_size) { for (int x = 0; x < refine_size.width; x += slice_size) { slice_coordinates slice; slice.x = x; slice.y = y; slice.size.width = std::min(slice_size, refine_size.width - x); slice.size.height = std::min(slice_size, refine_size.height - y); res.slices.push_back(slice); if (x == 0) { res.grid_size.width++; } } res.grid_size.height++; } return res; } // no pinpoints, dynamically calculate the grid size (e.g. minicpmv) auto best_size = get_best_resize(original_size, slice_size, patch_size, has_slices); res.overview_size = best_size; if (!has_slices) { // skip slicing logic res.refined_size = clip_image_size{0, 0}; res.grid_size = clip_image_size{0, 0}; } else { auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio); auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true); res.grid_size = best_grid; res.refined_size = refine_size; int width = refine_size.width; int height = refine_size.height; int grid_x = int(width / best_grid.width); int grid_y = int(height / best_grid.height); for (int patches_y = 0, ic = 0; patches_y < refine_size.height && ic < best_grid.height; patches_y += grid_y, ic += 1) { for (int patches_x = 0, jc = 0; patches_x < refine_size.width && jc < best_grid.width; patches_x += grid_x, jc += 1) { slice_coordinates slice; slice.x = patches_x; slice.y = patches_y; slice.size.width = grid_x; slice.size.height = grid_y; res.slices.push_back(slice); // LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y); } } } return res; } static std::vector slice_image(const clip_image_u8 * img, const slice_instructions & inst) { std::vector output; // resize to overview size clip_image_u8_ptr resized_img(clip_image_u8_init()); image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height); output.push_back(std::move(resized_img)); if (inst.slices.empty()) { // no slices, just return the resized image return output; } // resize to refined size clip_image_u8_ptr refined_img(clip_image_u8_init()); if (inst.padding_refined) { image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size); } else { image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height); } // create slices for (const auto & slice : inst.slices) { int x = slice.x; int y = slice.y; int w = slice.size.width; int h = slice.size.height; clip_image_u8_ptr img_slice(clip_image_u8_init()); image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h); output.push_back(std::move(img_slice)); } return output; } private: static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) { int width = original_size.width; int height = original_size.height; if ((width * height > scale_resolution * scale_resolution) || allow_upscale) { float r = static_cast(width) / height; height = static_cast(scale_resolution / std::sqrt(r)); width = static_cast(height * r); } clip_image_size res; res.width = ensure_divide(width, patch_size); res.height = ensure_divide(height, patch_size); return res; } /** * Selects the best resolution from a list of possible resolutions based on the original size. * * @param original_size The original size of the image * @param possible_resolutions A list of possible resolutions * @return The best fit resolution */ static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector & possible_resolutions) { int original_width = original_size.width; int original_height = original_size.height; clip_image_size best_fit; int max_effective_resolution = 0; int min_wasted_resolution = std::numeric_limits::max(); for (const auto & resolution : possible_resolutions) { int width = resolution.width; int height = resolution.height; float scale = std::min(static_cast(width) / original_width, static_cast(height) / original_height); int downscaled_width = static_cast(original_width * scale); int downscaled_height = static_cast(original_height * scale); int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); int wasted_resolution = (width * height) - effective_resolution; // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution); if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { max_effective_resolution = effective_resolution; min_wasted_resolution = wasted_resolution; best_fit = resolution; } } return best_fit; } // used by llava 1.6 with custom list of pinpoints static clip_image_size select_best_resolution(const std::vector & pinpoints, const clip_image_size & original_size) { std::vector possible_resolutions; for (size_t i = 0; i < pinpoints.size(); i += 2) { possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]}); } return select_best_resolution(original_size, possible_resolutions); } static int ensure_divide(int length, int patch_size) { return std::max(static_cast(std::round(static_cast(length) / patch_size) * patch_size), patch_size); } static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) { int width = original_size.width; int height = original_size.height; int grid_x = grid.width; int grid_y = grid.height; int refine_width = ensure_divide(width, grid_x); int refine_height = ensure_divide(height, grid_y); clip_image_size grid_size; grid_size.width = refine_width / grid_x; grid_size.height = refine_height / grid_y; auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale); int best_grid_width = best_grid_size.width; int best_grid_height = best_grid_size.height; clip_image_size refine_size; refine_size.width = best_grid_width * grid_x; refine_size.height = best_grid_height * grid_y; return refine_size; } static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) { std::vector candidate_split_grids_nums; for (int i : {multiple - 1, multiple, multiple + 1}) { if (i == 1 || i > max_slice_nums) { continue; } candidate_split_grids_nums.push_back(i); } std::vector candidate_grids; for (int split_grids_nums : candidate_split_grids_nums) { int m = 1; while (m <= split_grids_nums) { if (split_grids_nums % m == 0) { candidate_grids.push_back(clip_image_size{m, split_grids_nums / m}); } ++m; } } clip_image_size best_grid{1, 1}; float min_error = std::numeric_limits::infinity(); for (const auto& grid : candidate_grids) { float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height)); if (error < min_error) { best_grid = grid; min_error = error; } } return best_grid; } }; // TODO @ngxson : decprecate the load_image_size singleton pattern int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) { const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size); return inst.grid_size.width; } // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector // res_imgs memory is being allocated here, previous allocations will be freed if found bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) { clip_image_size original_size{img->nx, img->ny}; bool pad_to_square = true; auto & params = ctx->vision_model.hparams; // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) { pad_to_square = false; } if (clip_is_minicpmv(ctx)) { auto const inst = llava_uhd::get_slice_instructions(ctx, original_size); std::vector imgs = llava_uhd::slice_image(img, inst); for (size_t i = 0; i < imgs.size(); ++i) { // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp"); clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std); res_imgs->entries.push_back(std::move(res)); } return true; } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) { clip_image_u8 resized; auto patch_size = clip_get_patch_size(ctx) * 2; int nx = ceil((float)img->nx / patch_size) * patch_size; int ny = ceil((float)img->ny / patch_size) * patch_size; image_manipulation::bicubic_resize(*img, resized, nx, ny); clip_image_f32_ptr img_f32(clip_image_f32_init()); // clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std); // res_imgs->data[0] = *res; res_imgs->entries.push_back(std::move(img_f32)); return true; } else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE || ctx->proj_type == PROJECTOR_TYPE_GEMMA3 || ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) { clip_image_u8 resized_image; int sz = params.image_size; image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz}); clip_image_f32_ptr img_f32(clip_image_f32_init()); //clip_image_save_to_bmp(resized_image, "resized.bmp"); normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std); res_imgs->entries.push_back(std::move(img_f32)); return true; } else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) { clip_image_u8 resized_image; auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size); image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height); clip_image_f32_ptr img_f32(clip_image_f32_init()); normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std); res_imgs->entries.push_back(std::move(img_f32)); return true; } // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104) // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156 clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily if (pad_to_square) { // for llava-1.5, we resize image to a square, and pad the shorter side with a background color // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156 const int longer_side = std::max(img->nx, img->ny); temp->nx = longer_side; temp->ny = longer_side; temp->buf.resize(3 * longer_side * longer_side); // background color in RGB from LLaVA (this is the mean rgb color * 255) const std::array pad_color = {122, 116, 104}; // resize the image to the target_size image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color); clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std); res_imgs->entries.push_back(std::move(res)); return true; } else if (!params.image_grid_pinpoints.empty()) { // "spatial_unpad" with "anyres" processing for llava-1.6 auto const inst = llava_uhd::get_slice_instructions(ctx, original_size); std::vector imgs = llava_uhd::slice_image(img, inst); for (size_t i = 0; i < imgs.size(); ++i) { // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp"); clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std); res_imgs->entries.push_back(std::move(res)); } return true; } GGML_ASSERT(false && "Unknown image preprocessing type"); } ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) { return ctx->vision_model.image_newline; } void clip_free(clip_ctx * ctx) { if (ctx == nullptr) { return; } delete ctx; } // deprecated size_t clip_embd_nbytes(const struct clip_ctx * ctx) { const int32_t nx = ctx->vision_model.hparams.image_size; const int32_t ny = ctx->vision_model.hparams.image_size; return clip_embd_nbytes_by_img(ctx, nx, ny); } size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) { clip_image_f32 img; img.nx = img_w; img.ny = img_h; return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float); } int32_t clip_get_image_size(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.image_size; } int32_t clip_get_patch_size(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.patch_size; } int32_t clip_get_hidden_size(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.hidden_size; } const char * clip_patch_merge_type(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat"; } const int32_t * clip_image_grid(const struct clip_ctx * ctx) { if (ctx->vision_model.hparams.image_grid_pinpoints.size()) { return &ctx->vision_model.hparams.image_grid_pinpoints.front(); } return nullptr; } size_t get_clip_image_grid_size(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.image_grid_pinpoints.size(); } // deprecated int clip_n_patches(const struct clip_ctx * ctx) { clip_image_f32 img; img.nx = ctx->vision_model.hparams.image_size; img.ny = ctx->vision_model.hparams.image_size; return clip_n_output_tokens(ctx, &img); } // deprecated int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) { return clip_n_output_tokens(ctx, img); } int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) { const auto & params = ctx->vision_model.hparams; const int n_total = clip_n_output_tokens(ctx, img); if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) { return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0); } return n_total; } int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) { const auto & params = ctx->vision_model.hparams; if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) { return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0); } return 1; } int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) { const auto & params = ctx->vision_model.hparams; int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size); if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) { n_patches /= 4; } else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) { if (ctx->minicpmv_version == 2) { n_patches = 96; } else if (ctx->minicpmv_version == 3) { n_patches = 64; } else if (ctx->minicpmv_version == 4) { n_patches = 64; } else { GGML_ABORT("Unknown minicpmv version"); } } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) { int patch_size = params.patch_size * 2; int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0); int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0); n_patches = x_patch * y_patch; } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { n_patches = 256; } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) { n_patches /= ctx->vision_model.hparams.proj_scale_factor; } else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) { int n_patches_x = img->nx / params.patch_size; int n_patches_y = img->ny / params.patch_size; n_patches = n_patches_y*n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row } return n_patches; } static std::vector>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector> & pos) { assert(embed_dim % 2 == 0); int H = pos.size(); int W = pos[0].size(); std::vector omega(embed_dim / 2); for (int i = 0; i < embed_dim / 2; ++i) { omega[i] = 1.0 / pow(10000.0, static_cast(i) / (embed_dim / 2)); } std::vector>> emb(H, std::vector>(W, std::vector(embed_dim))); for (int h = 0; h < H; ++h) { for (int w = 0; w < W; ++w) { for (int d = 0; d < embed_dim / 2; ++d) { float out_value = pos[h][w] * omega[d]; emb[h][w][d] = sin(out_value); emb[h][w][d + embed_dim / 2] = cos(out_value); } } } return emb; } static std::vector>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector>> & grid) { assert(embed_dim % 2 == 0); std::vector>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2) std::vector>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2) int H = emb_h.size(); int W = emb_h[0].size(); std::vector>> emb(H, std::vector>(W, std::vector(embed_dim))); for (int h = 0; h < H; ++h) { for (int w = 0; w < W; ++w) { for (int d = 0; d < embed_dim / 2; ++d) { emb[h][w][d] = emb_h[h][w][d]; emb[h][w][d + embed_dim / 2] = emb_w[h][w][d]; } } } return emb; } static std::vector> get_2d_sincos_pos_embed(int embed_dim, const std::pair image_size) { int grid_h_size = image_size.first; int grid_w_size = image_size.second; std::vector grid_h(grid_h_size); std::vector grid_w(grid_w_size); for (int i = 0; i < grid_h_size; ++i) { grid_h[i] = static_cast(i); } for (int i = 0; i < grid_w_size; ++i) { grid_w[i] = static_cast(i); } std::vector> grid(grid_h_size, std::vector(grid_w_size)); for (int h = 0; h < grid_h_size; ++h) { for (int w = 0; w < grid_w_size; ++w) { grid[h][w] = grid_w[w]; } } std::vector>> grid_2d = {grid, grid}; for (int h = 0; h < grid_h_size; ++h) { for (int w = 0; w < grid_w_size; ++w) { grid_2d[0][h][w] = grid_h[h]; grid_2d[1][h][w] = grid_w[w]; } } std::vector>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d); int H = image_size.first; int W = image_size.second; std::vector> pos_embed_2d(H * W, std::vector(embed_dim)); for (int h = 0; h < H; ++h) { for (int w = 0; w < W; ++w) { pos_embed_2d[w * H + h] = pos_embed_3d[h][w]; } } return pos_embed_2d; } bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { clip_image_f32_batch imgs; clip_image_f32_ptr img_copy(clip_image_f32_init()); *img_copy = *img; imgs.entries.push_back(std::move(img_copy)); return clip_image_batch_encode(ctx, n_threads, &imgs, vec); } bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) { const clip_image_f32_batch & imgs = *imgs_c_ptr; int batch_size = imgs.entries.size(); if (ctx->has_llava_projector || ctx->proj_type == PROJECTOR_TYPE_MINICPMV || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) { GGML_ASSERT(batch_size == 1); } // build the inference graph ggml_backend_sched_reset(ctx->sched.get()); ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true); ggml_backend_sched_alloc_graph(ctx->sched.get(), gf); // set inputs const auto & model = ctx->vision_model; const auto & hparams = model.hparams; const int image_size_width = imgs.entries[0]->nx; const int image_size_height = imgs.entries[0]->ny; const int patch_size = hparams.patch_size; const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int num_positions = num_patches + (model.class_embedding ? 1 : 0); const int pos_w = ctx->load_image_size.width / patch_size; const int pos_h = ctx->load_image_size.height / patch_size; const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl auto get_inp_tensor = [&gf](const char * name) { struct ggml_tensor * inp = ggml_graph_get_tensor(gf, name); if (inp == nullptr) { GGML_ABORT("Failed to get tensor %s", name); } if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) { GGML_ABORT("Tensor %s is not an input tensor", name); } return inp; }; auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector & values) { ggml_tensor * cur = get_inp_tensor(name); GGML_ASSERT(cur->type == GGML_TYPE_F32); GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size()); ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur)); }; auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector & values) { ggml_tensor * cur = get_inp_tensor(name); GGML_ASSERT(cur->type == GGML_TYPE_I32); GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size()); ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur)); }; // set input pixel values { size_t nelem = 0; for (const auto & img : imgs.entries) { nelem += img->nx * img->ny * 3; } std::vector inp_raw(nelem); // layout of data (note: the channel dim is unrolled to better visualize the layout): // // ┌──W──┐ // │ H │ channel = R // ├─────┤ │ // │ H │ channel = G // ├─────┤ │ // │ H │ channel = B // └─────┘ │ // ──────┘ x B for (size_t i = 0; i < imgs.entries.size(); i++) { const int nx = imgs.entries[i]->nx; const int ny = imgs.entries[i]->ny; const int n = nx * ny; for (int b = 0; b < batch_size; b++) { float * batch_entry = inp_raw.data() + b * (3*n); for (int y = 0; y < ny; y++) { for (int x = 0; x < nx; x++) { size_t base_src = 3*(y * nx + x); // idx of the first channel size_t base_dst = y * nx + x; // idx of the first channel batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ]; batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1]; batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2]; } } } } set_input_f32("inp_raw", inp_raw); } // set input per projector switch (ctx->proj_type) { case PROJECTOR_TYPE_MINICPMV: { // inspired from siglip: // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316 std::vector positions(pos_h * pos_w); int bucket_coords_h[1024]; int bucket_coords_w[1024]; for (int i = 0; i < pos_h; i++){ bucket_coords_h[i] = std::floor(70.0*i/pos_h); } for (int i = 0; i < pos_w; i++){ bucket_coords_w[i] = std::floor(70.0*i/pos_w); } for (int i = 0, id = 0; i < pos_h; i++){ for (int j = 0; j < pos_w; j++){ positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j]; } } set_input_i32("positions", positions); // inspired from resampler of Qwen-VL: // -> https://huggingface.co/Qwen/Qwen-VL/tree/main // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23 int embed_dim = clip_n_mmproj_embd(ctx); // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos? auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h)); std::vector pos_embed(embed_dim * pos_w * pos_h); for(int i = 0; i < pos_w * pos_h; ++i){ for(int j = 0; j < embed_dim; ++j){ pos_embed[i * embed_dim + j] = pos_embed_t[i][j]; } } set_input_f32("pos_embed", pos_embed); } break; case PROJECTOR_TYPE_QWEN2VL: { const int merge_ratio = 2; const int pw = image_size_width / patch_size; const int ph = image_size_height / patch_size; std::vector positions(num_positions * 4); int ptr = 0; for (int y = 0; y < ph; y += merge_ratio) { for (int x = 0; x < pw; x += merge_ratio) { for (int dy = 0; dy < 2; dy++) { for (int dx = 0; dx < 2; dx++) { positions[ ptr] = y + dy; positions[ num_patches + ptr] = x + dx; positions[2 * num_patches + ptr] = y + dy; positions[3 * num_patches + ptr] = x + dx; ptr++; } } } } set_input_i32("positions", positions); } break; case PROJECTOR_TYPE_QWEN25VL: { // pw * ph = number of tokens output by ViT after apply patch merger // ipw * ipw = number of vision token been processed inside ViT const int merge_ratio = 2; const int pw = image_size_width / patch_size / merge_ratio; const int ph = image_size_height / patch_size / merge_ratio; const int ipw = image_size_width / patch_size; const int iph = image_size_height / patch_size; std::vector idx (ph * pw); std::vector inv_idx(ph * pw); if (use_window_attn) { const int attn_window_size = 112; const int grid_window = attn_window_size / patch_size / merge_ratio; int dst = 0; // [num_vision_tokens, num_vision_tokens] attention mask tensor std::vector mask(pow(ipw * iph, 2), std::numeric_limits::lowest()); int mask_row = 0; for (int y = 0; y < ph; y += grid_window) { for (int x = 0; x < pw; x += grid_window) { const int win_h = std::min(grid_window, ph - y); const int win_w = std::min(grid_window, pw - x); const int dst_0 = dst; // group all tokens belong to the same window togather (to a continue range) for (int dy = 0; dy < win_h; dy++) { for (int dx = 0; dx < win_w; dx++) { const int src = (y + dy) * pw + (x + dx); GGML_ASSERT(src < (int)idx.size()); GGML_ASSERT(dst < (int)inv_idx.size()); idx [src] = dst; inv_idx[dst] = src; dst++; } } for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) { int row_offset = mask_row * (ipw * iph); std::fill( mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio), mask.begin() + row_offset + (dst * merge_ratio * merge_ratio), 0.0); mask_row++; } } } set_input_i32("window_idx", idx); set_input_i32("inv_window_idx", inv_idx); set_input_f32("window_mask", mask); } else { for (int i = 0; i < ph * pw; i++) { idx[i] = i; } } const int mpow = merge_ratio * merge_ratio; std::vector positions(num_positions * 4); int ptr = 0; for (int y = 0; y < iph; y += merge_ratio) { for (int x = 0; x < ipw; x += merge_ratio) { for (int dy = 0; dy < 2; dy++) { for (int dx = 0; dx < 2; dx++) { auto remap = idx[ptr / mpow]; remap = (remap * mpow) + (ptr % mpow); positions[ remap] = y + dy; positions[ num_patches + remap] = x + dx; positions[2 * num_patches + remap] = y + dy; positions[3 * num_patches + remap] = x + dx; ptr++; } } } } set_input_i32("positions", positions); } break; case PROJECTOR_TYPE_PIXTRAL: { // set the 2D positions int n_patches_per_col = image_size_width / patch_size; std::vector pos_data(num_positions); // dimension H for (int i = 0; i < num_positions; i++) { pos_data[i] = i / n_patches_per_col; } set_input_i32("pos_h", pos_data); // dimension W for (int i = 0; i < num_positions; i++) { pos_data[i] = i % n_patches_per_col; } set_input_i32("pos_w", pos_data); } break; case PROJECTOR_TYPE_GLM_EDGE: { // llava and other models std::vector positions(num_positions); for (int i = 0; i < num_positions; i++) { positions[i] = i; } set_input_i32("positions", positions); } break; case PROJECTOR_TYPE_MLP: case PROJECTOR_TYPE_MLP_NORM: case PROJECTOR_TYPE_LDP: case PROJECTOR_TYPE_LDPV2: { // llava and other models std::vector positions(num_positions); for (int i = 0; i < num_positions; i++) { positions[i] = i; } set_input_i32("positions", positions); // The patches vector is used to get rows to index into the embeds with; // we should skip dim 0 only if we have CLS to avoid going out of bounds // when retrieving the rows. int patch_offset = model.class_embedding ? 1 : 0; std::vector patches(num_patches); for (int i = 0; i < num_patches; i++) { patches[i] = i + patch_offset; } set_input_i32("patches", patches); } break; case PROJECTOR_TYPE_GEMMA3: case PROJECTOR_TYPE_IDEFICS3: { // do nothing } break; default: GGML_ABORT("Unknown projector type"); } ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads); auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf); if (status != GGML_STATUS_SUCCESS) { LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status); return false; } // the last node is the embedding tensor struct ggml_tensor * embeddings = ggml_graph_node(gf, -1); // copy the embeddings to the location passed by the user ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings)); return true; } bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) { assert(itype < GGML_TYPE_COUNT); ggml_type type = static_cast(itype); auto * ctx_clip = clip_init(fname_inp, clip_context_params{ /* use_gpu */ false, /* verbosity */ GGML_LOG_LEVEL_ERROR, }); const auto & ctx_src = ctx_clip->ctx_gguf.get(); const auto & ctx_data = ctx_clip->ctx_data.get(); auto * ctx_out = gguf_init_empty(); gguf_set_kv(ctx_out, ctx_src); gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); gguf_set_val_u32(ctx_out, "general.file_type", itype); auto fout = std::ofstream(fname_out, std::ios::binary); const int n_tensors = gguf_get_n_tensors(ctx_src); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx_src, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); gguf_add_tensor(ctx_out, cur); } const size_t meta_size = gguf_get_meta_size(ctx_out); for (size_t i = 0; i < meta_size; ++i) { fout.put(0); } // regexes of tensor names to be quantized const std::vector k_names = { ".*weight", }; std::vector work(512); std::vector conv_buf(512); size_t total_size_org = 0; size_t total_size_new = 0; for (int i = 0; i < n_tensors; ++i) { const std::string name = gguf_get_tensor_name(ctx_src, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str()); enum ggml_type new_type; void * new_data; size_t new_size; bool quantize = false; for (const auto & s : k_names) { if (std::regex_match(name, std::regex(s))) { quantize = true; break; } } // quantize only 2D tensors and bigger than block size quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type); if (quantize) { new_type = type; if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) { new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type)); } const size_t n_elms = ggml_nelements(cur); float * f32_data; switch (cur->type) { case GGML_TYPE_F32: f32_data = (float *)cur->data; break; case GGML_TYPE_F16: if (conv_buf.size() < n_elms) { conv_buf.resize(n_elms); } for (size_t j = 0; j < n_elms; ++j) { conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]); } f32_data = (float *)conv_buf.data(); break; default: LOG_ERR("%s: Please use an input file in f32 or f16\n", __func__); gguf_free(ctx_out); return false; } if (work.size() < n_elms * 4) { work.resize(n_elms * 4); } new_data = work.data(); new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr); } else { new_type = cur->type; new_data = cur->data; new_size = ggml_nbytes(cur); } const size_t orig_size = ggml_nbytes(cur); total_size_org += orig_size; total_size_new += new_size; gguf_set_tensor_type(ctx_out, name.c_str(), new_type); GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size); gguf_set_tensor_data(ctx_out, name.c_str(), new_data); fout.write((const char *)new_data, new_size); size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size; for (size_t j = 0; j < pad; ++j) { fout.put(0); } LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize, orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); } // go back to beginning of file and write the updated metadata fout.seekp(0, std::ios::beg); std::vector meta(meta_size); gguf_get_meta_data(ctx_out, meta.data()); fout.write((const char *)meta.data(), meta_size); fout.close(); clip_free(ctx_clip); gguf_free(ctx_out); { LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0); LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0); } return true; } int clip_n_mmproj_embd(const struct clip_ctx * ctx) { switch (ctx->proj_type) { case PROJECTOR_TYPE_LDP: return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0]; case PROJECTOR_TYPE_LDPV2: return ctx->vision_model.mm_model_peg_0_b->ne[0]; case PROJECTOR_TYPE_MLP: case PROJECTOR_TYPE_PIXTRAL: return ctx->vision_model.mm_2_b->ne[0]; case PROJECTOR_TYPE_MLP_NORM: return ctx->vision_model.mm_3_b->ne[0]; case PROJECTOR_TYPE_MINICPMV: if (ctx->minicpmv_version == 2) { return 4096; } else if (ctx->minicpmv_version == 3) { return 3584; } else if (ctx->minicpmv_version == 4) { return 3584; } GGML_ABORT("Unknown minicpmv version"); case PROJECTOR_TYPE_GLM_EDGE: return ctx->vision_model.mm_model_mlp_3_w->ne[1]; case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN25VL: return ctx->vision_model.mm_1_b->ne[0]; case PROJECTOR_TYPE_GEMMA3: return ctx->vision_model.mm_input_proj_w->ne[0]; case PROJECTOR_TYPE_IDEFICS3: return ctx->vision_model.projection->ne[1]; default: GGML_ABORT("Unknown projector type"); } } int clip_is_minicpmv(const struct clip_ctx * ctx) { if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) { return ctx->minicpmv_version; } return 0; } bool clip_is_glm(const struct clip_ctx * ctx) { return ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE; } bool clip_is_qwen2vl(const struct clip_ctx * ctx) { return ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL; } bool clip_is_llava(const struct clip_ctx * ctx) { return ctx->has_llava_projector; } bool clip_is_gemma3(const struct clip_ctx * ctx) { return ctx->proj_type == PROJECTOR_TYPE_GEMMA3; } bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) { clip_image_f32 clip_img; clip_img.buf.resize(h * w * 3); for (int i = 0; i < h*w*3; i++) { clip_img.buf[i] = img[i]; } clip_img.nx = w; clip_img.ny = h; clip_image_encode(ctx, n_threads, &clip_img, vec); return true; } // // API used internally with mtmd // projector_type clip_get_projector_type(const struct clip_ctx * ctx) { return ctx->proj_type; }