package ml import ( "bytes" "context" "encoding/binary" "fmt" "os" "slices" "strconv" "strings" "github.com/ollama/ollama/fs" ) type Backend interface { Config() fs.Config Get(name string) Tensor NewContext() Context NewContextSize(size int) Context } // BackendCacheConfig should be implemented by backends that need special output // from the cache to meet specific requirements. It is frequently implemented in // conjunction with ScaledDotProductAttention. type BackendCacheConfig interface { CacheConfig() CacheConfig } // CacheConfig controls optimizations (mostly backend-specific) that may transform // the output the cache to work better with specific kernels. type CacheConfig struct { // CachePadding specifies the multiple for the number of tokens of cache history // that will be returned from cache Get for k, v and mask. The capacity of the // cache itself will also be increased to a multiple of this size if needed. CachePadding int // PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put // and return the permuted version via Get. This uses the cache copy operation // to avoid a Contiguous call on the permuted tensor. PermutedV bool // MaskDType specifies the data type for generating the mask. If unset it will // default to DTypeF32. MaskDType DType // MaskBatchPadding specifies the multiple for the batch size dimension in the mask. // Any position that does not correspond to an actual token will be filled with -Inf. MaskBatchPadding int } // BackendParams controls how the backend loads and executes models type BackendParams struct { // Progress is a callback function that allows reporting percentage completion // of model loading Progress func(float32) // NumThreads sets the number of threads to use if running on the CPU NumThreads int // MainGPU is the index of the primary GPU to use MainGPU int // NumGPULayers is the number of layers to offload to GPUs NumGPULayers int // TensorSplit is the fraction of the model to offload to each GPU TensorSplit []float32 // FlashAttention indicates that we should use a fused flash attention kernel FlashAttention bool } var backends = make(map[string]func(context.Context, *os.File, BackendParams) (Backend, error)) func RegisterBackend(name string, f func(context.Context, *os.File, BackendParams) (Backend, error)) { if _, ok := backends[name]; ok { panic("backend: backend already registered") } backends[name] = f } func NewBackend(ctx context.Context, f *os.File, params BackendParams) (Backend, error) { if backend, ok := backends["ggml"]; ok { return backend(ctx, f, params) } return nil, fmt.Errorf("unsupported backend") } type Context interface { Empty(dtype DType, shape ...int) Tensor Zeros(dtype DType, shape ...int) Tensor FromFloatSlice(s []float32, shape ...int) (Tensor, error) FromIntSlice(s []int32, shape ...int) (Tensor, error) // Arange creates a 1D tensor with values within an interval (start, stop] increased by step. Arange(start, stop, step float32, dtype DType) Tensor Forward(...Tensor) Context Compute(...Tensor) // Reserve is analogous to Compute but rather than executing a // graph, simply preallocates memory. Typically called with a // worst case graph to ensure all resources are available for // for future inference. Reserve() error MaxGraphNodes() int Close() // Input returns a context appropriate for creating tensors that are // inputs to the model (which includes things like output locations) Input() Context // Layer returns a context appropriate for creating intermediate tensors Layer(int) Context } type Tensor interface { Dim(n int) int Stride(n int) int Shape() []int DType() DType Bytes() []byte Floats() []float32 Neg(ctx Context) Tensor Add(ctx Context, t2 Tensor) Tensor Mul(ctx Context, t2 Tensor) Tensor Mulmat(ctx Context, t2 Tensor) Tensor MulmatFullPrec(ctx Context, t2 Tensor) Tensor MulmatID(ctx Context, t2, ids Tensor) Tensor Softmax(ctx Context) Tensor LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor RMSNorm(ctx Context, weight Tensor, eps float32) Tensor Scale(ctx Context, s float64) Tensor AvgPool2D(ctx Context, k, s int, p float32) Tensor Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor Sin(ctx Context) Tensor Cos(ctx Context) Tensor Tanh(ctx Context) Tensor GELU(ctx Context) Tensor SILU(ctx Context) Tensor Sigmoid(ctx Context) Tensor Reshape(ctx Context, shape ...int) Tensor View(ctx Context, offset int, shape ...int) Tensor Permute(ctx Context, shape ...int) Tensor Contiguous(ctx Context) Tensor Set(ctx Context, t2 Tensor, offset int, strides ...int) Tensor Pad(ctx Context, shape ...int) Tensor Unpad(ctx Context, shape ...int) Tensor Stack(ctx Context, dim int, s ...Tensor) Tensor // Repeat repeats the tensor n times along dimension dim Repeat(ctx Context, dim, n int) Tensor Concat(ctx Context, t2 Tensor, dim int) Tensor Rows(ctx Context, t2 Tensor) Tensor Copy(ctx Context, t2 Tensor) Tensor Duplicate(ctx Context) Tensor TopK(ctx Context, k int) Tensor } // ScaledDotProductAttention implements a fused attention // operation equivalent to following code on a tensor named // query: // // query = query.Permute(ctx, 0, 2, 1, 3) // key = key.Permute(ctx, 0, 2, 1, 3) // value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx) // // kq := key.MulmatFullPrec(ctx, query) // // kq = kq.Scale(ctx, scale) // // if mask != nil { // kq = kq.Add(ctx, mask) // } // // kq = kq.Softmax(ctx) // // kqv := value.Mulmat(ctx, kq) // return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) type ScaledDotProductAttention interface { ScaledDotProductAttention(ctx Context, key, value, mask Tensor, scale float64) Tensor } type number interface { ~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~float32 | ~float64 | ~complex64 | ~complex128 } func mul[T number](s ...T) T { p := T(1) for _, v := range s { p *= v } return p } type DumpOptions struct { // Items is the number of elements to print at the beginning and end of each dimension. Items int // Precision is the number of decimal places to print. Applies to float32 and float64. Precision int } func Dump(ctx Context, t Tensor, opts ...DumpOptions) string { if len(opts) < 1 { opts = append(opts, DumpOptions{ Items: 3, Precision: 4, }) } switch t.DType() { case DTypeF32: return dump[[]float32](ctx, t, opts[0].Items, func(f float32) string { return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32) }) case DTypeF16, DTypeQ80, DTypeQ40: f32 := ctx.Input().Empty(DTypeF32, t.Shape()...) f32 = t.Copy(ctx, f32) return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string { return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32) }) case DTypeI32: return dump[[]int32](ctx, t, opts[0].Items, func(i int32) string { return strconv.FormatInt(int64(i), 10) }) default: return "" } } func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string { if t.Bytes() == nil { ctx.Forward(t).Compute(t) } s := make(S, mul(t.Shape()...)) if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil { panic(err) } shape := t.Shape() slices.Reverse(shape) var sb strings.Builder var f func([]int, int) f = func(dims []int, stride int) { prefix := strings.Repeat(" ", len(shape)-len(dims)+1) sb.WriteString("[") defer func() { sb.WriteString("]") }() for i := 0; i < dims[0]; i++ { if i >= items && i < dims[0]-items { sb.WriteString("..., ") // skip to next printable element skip := dims[0] - 2*items if len(dims) > 1 { stride += mul(append(dims[1:], skip)...) fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix) } i += skip - 1 } else if len(dims) > 1 { f(dims[1:], stride) stride += mul(dims[1:]...) if i < dims[0]-1 { fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix) } } else { text := fn(s[stride+i]) if len(text) > 0 && text[0] != '-' { sb.WriteString(" ") } sb.WriteString(text) if i < dims[0]-1 { sb.WriteString(", ") } } } } f(shape, 0) return sb.String() } type DType int const ( DTypeOther DType = iota DTypeF32 DTypeF16 DTypeQ80 DTypeQ40 DTypeI32 )