ollama/model/models/mistral3/model.go
Bruce MacDonald 6bd0a983cd model: support for mistral-small in the ollama runner
Mistral is a popular research lab making open source models. This updates
the forward pass of llama architecture models to support both llama models
and mistral models by accounting for additional metadata present in mistral
models, and finding the correct dimensions for the output projection.
2025-04-03 16:57:36 -07:00

189 lines
5.3 KiB
Go

package mistral3
import (
"bytes"
"image"
"slices"
"sync"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
*TextModel
*VisionModel `gguf:"v,vision"`
*MultiModalProjector `gguf:"mm"`
ImageProcessor
}
// Implement MultimodalProcessor interface
var _ model.MultimodalProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
textModel, err := NewTextModel(c)
if err != nil {
return nil, err
}
m := &Model{
TextModel: textModel,
VisionModel: newVisionModel(c),
ImageProcessor: newImageProcessor(c),
MultiModalProjector: newMultiModalProjector(c),
}
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
return m, nil
}
type PatchMerger struct {
MergingLayer *nn.Linear `gguf:"merging_layer"`
}
func (pm *PatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point, spatialMergeSize int) ml.Tensor {
d := visionOutputs.Dim(0)
imageGrid := visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Reshape(ctx, size.X, size.Y, d)
kernel := ctx.Input().Empty(ml.DTypeF32, spatialMergeSize, spatialMergeSize, d)
patches := kernel.IM2Col(ctx, imageGrid, spatialMergeSize, spatialMergeSize, 0, 0, 1, 1)
reshaped := patches.Reshape(ctx, d*spatialMergeSize*spatialMergeSize, patches.Dim(1)*patches.Dim(2))
return pm.MergingLayer.Forward(ctx, reshaped)
}
type MultiModalProjector struct {
Norm *nn.RMSNorm `gguf:"norm"`
Linear1 *nn.Linear `gguf:"linear_1"`
Linear2 *nn.Linear `gguf:"linear_2"`
PatchMerger *PatchMerger `gguf:"patch_merger"`
spatialMergeSize int
eps float32
patchSize int
}
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point) (ml.Tensor, image.Point) {
visionOutputs = p.Norm.Forward(ctx, visionOutputs, p.eps)
patchSizes := image.Point{size.X / p.patchSize, size.Y / p.patchSize}
visionOutputs = p.PatchMerger.Forward(ctx, visionOutputs, patchSizes, p.spatialMergeSize)
visionOutputs = p.Linear1.Forward(ctx, visionOutputs)
visionOutputs = visionOutputs.GELU(ctx)
return p.Linear2.Forward(ctx, visionOutputs), image.Point{patchSizes.X / p.spatialMergeSize, patchSizes.Y / p.spatialMergeSize}
}
func newMultiModalProjector(c fs.Config) *MultiModalProjector {
return &MultiModalProjector{
spatialMergeSize: int(c.Uint("spatial_merge_size", 2)),
eps: c.Float("text_config.rms_norm_eps", 1e-5),
patchSize: int(c.Uint("vision.patch_size", 14)),
}
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
if len(m.VisionModel.Layers) == 0 {
return nil, model.ErrNoVisionModel
}
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
f32s, size, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s, size.X, size.Y, m.ImageProcessor.numChannels)
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
features, size := m.MultiModalProjector.Forward(ctx, visionOutputs, size)
// split into patches to be sent to the text transformer
parent := imageFeatures{tensor: features}
rows := make([]*imageRow, size.Y)
for i := range rows {
rows[i] = &imageRow{parent: &parent, s: i, shape: []int{features.Dim(0), size.X}}
}
return rows, nil
}
type imageFeatures struct {
tensor ml.Tensor
dataOnce sync.Once
data []float32
}
type imageRow struct {
parent *imageFeatures
s int
shape []int
}
func (r *imageRow) data() []float32 {
n := 1
for _, s := range r.shape {
n *= s
}
return r.parent.data[r.s*n : (r.s+1)*n]
}
// PostTokenize arranges Mistral 3's inputs for the forward pass
// In Mistral 3 and Pixtral, the input patches are arranged as follows:
// [IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_END]
// Each sequence of [IMG]...[IMG] is a set of patches of vision embeddings
// that can be processed together.
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
for _, inp := range inputs {
if inp.Multimodal == nil {
result = append(result, inp)
} else {
inputMultimodal := inp.Multimodal.([]*imageRow)
for i, row := range inputMultimodal {
// [IMG]
result = append(result, input.Input{Token: 10, Multimodal: row, MultimodalHash: inp.MultimodalHash, SameBatch: row.shape[1]})
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.shape[1]-1)...)
if i == len(inputMultimodal)-1 {
// [IMG_END]
result = append(result, input.Input{Token: 13})
} else {
// [IMG_BREAK]
result = append(result, input.Input{Token: 12})
}
}
}
}
return result, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}
func init() {
model.Register("mistral3", New)
}