ollama/model/qwen2/model.go
Bruce MacDonald 60f0b7db76 working
2025-01-24 16:51:19 -08:00

201 lines
6.3 KiB
Go

package qwen2
import (
"fmt"
"log/slog"
"math"
"github.com/ollama/ollama/cache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
)
type Options struct {
hiddenSize, numHeads, numKVHeads int64
eps, ropeBase, ropeScale float32
ropeDim uint32
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*Options
}
func New(c ml.Config) (model.Model, error) {
m := &Model{
BytePairEncoding: model.BytePairEncoding{
Pretokenizer: c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
Vocabulary: &model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: c.Uint("tokenizer.ggml.bos_token_id"),
EOS: c.Uint("tokenizer.ggml.eos_token_id"),
},
},
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
numKVHeads: int64(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count", 64),
},
}
slog.Debug("model configuration",
"arch", "qwen2",
"vocab_size", len(c.Strings("tokenizer.ggml.tokens")),
"n_merges", len(c.Strings("tokenizer.ggml.merges")),
"n_ctx_train", c.Uint("context_length"),
"n_embd", m.hiddenSize,
"n_layer", len(m.Layers),
"n_head", m.numHeads,
"n_head_kv", m.numKVHeads,
"n_rot", m.ropeDim,
"f_norm_rms_eps", m.eps,
"rope_freq_base", m.ropeBase,
"rope_freq_scale", m.ropeScale,
"bos_token_id", c.Uint("tokenizer.ggml.bos_token_id"),
"eos_token_id", c.Uint("tokenizer.ggml.eos_token_id"),
)
return m, nil
}
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, inputPositions ml.Tensor, layerIdx int, cache cache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
q := sa.Query.Forward(ctx, hiddenState)
ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.q_proj", layerIdx), q)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = q.RoPE(ctx, inputPositions, nil, opts.ropeDim, opts.ropeBase, opts.ropeScale)
ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.q_proj.rope", layerIdx), q)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, inputPositions, nil, opts.ropeDim, opts.ropeBase, opts.ropeScale)
ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.k_proj.rope", layerIdx), k)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.v_proj", layerIdx), v)
k, v, mask := cache.Put(ctx, k, v)
q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
kq := k.Mulmat(ctx, q)
kq = kq.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
kq = kq.Add(ctx, mask)
kq = kq.Softmax(ctx)
kqv := v.Mulmat(ctx, kq)
kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
output := sa.Output.Forward(ctx, kqv)
return output
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *SelfAttention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, layerIdx int, cache cache.Cache, opts *Options) ml.Tensor {
ctx.Trace(fmt.Sprintf("model.layers.%d.input", layerIdx), hiddenState)
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
ctx.Trace(fmt.Sprintf("model.layers.%d.input_layernorm", layerIdx), hiddenState)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, layerIdx, cache, opts)
ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.output", layerIdx), hiddenState)
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.residual", layerIdx), hiddenState)
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
ctx.Trace(fmt.Sprintf("model.layers.%d.post_attention_layernorm", layerIdx), hiddenState)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
ctx.Trace(fmt.Sprintf("model.layers.%d.mlp", layerIdx), hiddenState)
output := hiddenState.Add(ctx, residual)
ctx.Trace(fmt.Sprintf("model.layers.%d.output", layerIdx), output)
return output
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
slog.Debug("input tokens", "input_ids", opts.Inputs())
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
ctx.Trace("model.embed_tokens", hiddenState)
for i, layer := range m.Layers {
hiddenState = layer.Forward(ctx, hiddenState, positions, i, opts.Cache.Sub(i), m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
ctx.Trace("model.norm", hiddenState)
hiddenState = m.Output.Forward(ctx, hiddenState)
ctx.Trace("model.output", hiddenState)
outputs, err := ctx.FromIntSlice(opts.Outputs(), len(opts.Outputs()))
if err != nil {
return nil, err
}
return hiddenState.Rows(ctx, outputs), nil
}
func init() {
model.Register("qwen2", New)
}