ollama/llama/llama.cpp/src/llama-arch.h
Bruce MacDonald 6bd0a983cd model: support for mistral-small in the ollama runner
Mistral is a popular research lab making open source models. This updates
the forward pass of llama architecture models to support both llama models
and mistral models by accounting for additional metadata present in mistral
models, and finding the correct dimensions for the output projection.
2025-04-03 16:57:36 -07:00

417 lines
11 KiB
C++
Vendored

#pragma once
#include "ggml.h" // ggml_op
#include <string>
//
// gguf constants (sync with gguf.py)
//
enum llm_arch {
LLM_ARCH_LLAMA,
LLM_ARCH_MLLAMA,
LLM_ARCH_DECI,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
LLM_ARCH_GROK,
LLM_ARCH_GPT2,
LLM_ARCH_GPTJ,
LLM_ARCH_GPTNEOX,
LLM_ARCH_MPT,
LLM_ARCH_STARCODER,
LLM_ARCH_REFACT,
LLM_ARCH_BERT,
LLM_ARCH_NOMIC_BERT,
LLM_ARCH_JINA_BERT_V2,
LLM_ARCH_BLOOM,
LLM_ARCH_STABLELM,
LLM_ARCH_QWEN,
LLM_ARCH_QWEN2,
LLM_ARCH_QWEN2MOE,
LLM_ARCH_QWEN2VL,
LLM_ARCH_PHI2,
LLM_ARCH_PHI3,
LLM_ARCH_PHIMOE,
LLM_ARCH_PLAMO,
LLM_ARCH_CODESHELL,
LLM_ARCH_ORION,
LLM_ARCH_INTERNLM2,
LLM_ARCH_MINICPM,
LLM_ARCH_MINICPM3,
LLM_ARCH_GEMMA,
LLM_ARCH_GEMMA2,
LLM_ARCH_GEMMA3,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
LLM_ARCH_COMMAND_R,
LLM_ARCH_COHERE2,
LLM_ARCH_DBRX,
LLM_ARCH_OLMO,
LLM_ARCH_OLMO2,
LLM_ARCH_OLMOE,
LLM_ARCH_OPENELM,
LLM_ARCH_ARCTIC,
LLM_ARCH_DEEPSEEK,
LLM_ARCH_DEEPSEEK2,
LLM_ARCH_CHATGLM,
LLM_ARCH_BITNET,
LLM_ARCH_T5,
LLM_ARCH_T5ENCODER,
LLM_ARCH_JAIS,
LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE,
LLM_ARCH_RWKV6,
LLM_ARCH_RWKV6QWEN2,
LLM_ARCH_GRANITE,
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_CHAMELEON,
LLM_ARCH_SOLAR,
LLM_ARCH_WAVTOKENIZER_DEC,
LLM_ARCH_MISTRAL3,
LLM_ARCH_UNKNOWN,
};
enum llm_kv {
LLM_KV_GENERAL_TYPE,
LLM_KV_GENERAL_ARCHITECTURE,
LLM_KV_GENERAL_QUANTIZATION_VERSION,
LLM_KV_GENERAL_ALIGNMENT,
LLM_KV_GENERAL_NAME,
LLM_KV_GENERAL_AUTHOR,
LLM_KV_GENERAL_VERSION,
LLM_KV_GENERAL_URL,
LLM_KV_GENERAL_DESCRIPTION,
LLM_KV_GENERAL_LICENSE,
LLM_KV_GENERAL_SOURCE_URL,
LLM_KV_GENERAL_SOURCE_HF_REPO,
LLM_KV_VOCAB_SIZE,
LLM_KV_CONTEXT_LENGTH,
LLM_KV_EMBEDDING_LENGTH,
LLM_KV_FEATURES_LENGTH,
LLM_KV_BLOCK_COUNT,
LLM_KV_LEADING_DENSE_BLOCK_COUNT,
LLM_KV_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
LLM_KV_USE_PARALLEL_RESIDUAL,
LLM_KV_TENSOR_DATA_LAYOUT,
LLM_KV_EXPERT_COUNT,
LLM_KV_EXPERT_USED_COUNT,
LLM_KV_EXPERT_SHARED_COUNT,
LLM_KV_EXPERT_WEIGHTS_SCALE,
LLM_KV_EXPERT_WEIGHTS_NORM,
LLM_KV_EXPERT_GATING_FUNC,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,
LLM_KV_ATTN_LOGIT_SOFTCAPPING,
LLM_KV_FINAL_LOGIT_SOFTCAPPING,
LLM_KV_SWIN_NORM,
LLM_KV_RESCALE_EVERY_N_LAYERS,
LLM_KV_TIME_MIX_EXTRA_DIM,
LLM_KV_TIME_DECAY_EXTRA_DIM,
LLM_KV_RESIDUAL_SCALE,
LLM_KV_EMBEDDING_SCALE,
LLM_KV_TOKEN_SHIFT_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
LLM_KV_ATTENTION_CLAMP_KQV,
LLM_KV_ATTENTION_KEY_LENGTH,
LLM_KV_ATTENTION_VALUE_LENGTH,
LLM_KV_ATTENTION_LAYERNORM_EPS,
LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
LLM_KV_ATTENTION_GROUPNORM_EPS,
LLM_KV_ATTENTION_GROUPNORM_GROUPS,
LLM_KV_ATTENTION_CAUSAL,
LLM_KV_ATTENTION_Q_LORA_RANK,
LLM_KV_ATTENTION_KV_LORA_RANK,
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
LLM_KV_ROPE_FREQ_BASE,
LLM_KV_ROPE_SCALE_LINEAR,
LLM_KV_ROPE_SCALING_TYPE,
LLM_KV_ROPE_SCALING_FACTOR,
LLM_KV_ROPE_SCALING_ATTN_FACTOR,
LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
LLM_KV_ROPE_SCALING_FINETUNED,
LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
LLM_KV_SPLIT_NO,
LLM_KV_SPLIT_COUNT,
LLM_KV_SPLIT_TENSORS_COUNT,
LLM_KV_SSM_INNER_SIZE,
LLM_KV_SSM_CONV_KERNEL,
LLM_KV_SSM_STATE_SIZE,
LLM_KV_SSM_TIME_STEP_RANK,
LLM_KV_SSM_DT_B_C_RMS,
LLM_KV_WKV_HEAD_SIZE,
LLM_KV_TOKENIZER_MODEL,
LLM_KV_TOKENIZER_PRE,
LLM_KV_TOKENIZER_LIST,
LLM_KV_TOKENIZER_TOKEN_TYPE,
LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
LLM_KV_TOKENIZER_SCORES,
LLM_KV_TOKENIZER_MERGES,
LLM_KV_TOKENIZER_BOS_ID,
LLM_KV_TOKENIZER_EOS_ID,
LLM_KV_TOKENIZER_EOT_ID,
LLM_KV_TOKENIZER_EOM_ID,
LLM_KV_TOKENIZER_UNK_ID,
LLM_KV_TOKENIZER_SEP_ID,
LLM_KV_TOKENIZER_PAD_ID,
LLM_KV_TOKENIZER_CLS_ID,
LLM_KV_TOKENIZER_MASK_ID,
LLM_KV_TOKENIZER_ADD_BOS,
LLM_KV_TOKENIZER_ADD_EOS,
LLM_KV_TOKENIZER_ADD_PREFIX,
LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,
LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
LLM_KV_TOKENIZER_HF_JSON,
LLM_KV_TOKENIZER_RWKV,
LLM_KV_TOKENIZER_CHAT_TEMPLATE,
LLM_KV_TOKENIZER_CHAT_TEMPLATE_N,
LLM_KV_TOKENIZER_FIM_PRE_ID,
LLM_KV_TOKENIZER_FIM_SUF_ID,
LLM_KV_TOKENIZER_FIM_MID_ID,
LLM_KV_TOKENIZER_FIM_PAD_ID,
LLM_KV_TOKENIZER_FIM_REP_ID,
LLM_KV_TOKENIZER_FIM_SEP_ID,
LLM_KV_ADAPTER_TYPE,
LLM_KV_ADAPTER_LORA_ALPHA,
LLM_KV_POSNET_EMBEDDING_LENGTH,
LLM_KV_POSNET_BLOCK_COUNT,
LLM_KV_CONVNEXT_EMBEDDING_LENGTH,
LLM_KV_CONVNEXT_BLOCK_COUNT,
// deprecated:
LLM_KV_TOKENIZER_PREFIX_ID,
LLM_KV_TOKENIZER_SUFFIX_ID,
LLM_KV_TOKENIZER_MIDDLE_ID,
};
enum llm_tensor {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_TOKEN_EMBD_NORM,
LLM_TENSOR_TOKEN_TYPES,
LLM_TENSOR_POS_EMBD,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ROPE_FACTORS_LONG,
LLM_TENSOR_ROPE_FACTORS_SHORT,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_QKV,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_NORM_2,
LLM_TENSOR_ATTN_OUT_NORM,
LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_POST_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_ACT,
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
LLM_TENSOR_FFN_GATE_EXP,
LLM_TENSOR_FFN_UP_EXP,
LLM_TENSOR_FFN_NORM_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_FFN_EXP_PROBS_B,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_LAYER_OUT_NORM,
LLM_TENSOR_SSM_IN,
LLM_TENSOR_SSM_CONV1D,
LLM_TENSOR_SSM_X,
LLM_TENSOR_SSM_DT,
LLM_TENSOR_SSM_A,
LLM_TENSOR_SSM_D,
LLM_TENSOR_SSM_OUT,
LLM_TENSOR_TIME_MIX_W1,
LLM_TENSOR_TIME_MIX_W2,
LLM_TENSOR_TIME_MIX_LERP_X,
LLM_TENSOR_TIME_MIX_LERP_W,
LLM_TENSOR_TIME_MIX_LERP_K,
LLM_TENSOR_TIME_MIX_LERP_V,
LLM_TENSOR_TIME_MIX_LERP_R,
LLM_TENSOR_TIME_MIX_LERP_G,
LLM_TENSOR_TIME_MIX_LERP_FUSED,
LLM_TENSOR_TIME_MIX_FIRST,
LLM_TENSOR_TIME_MIX_DECAY,
LLM_TENSOR_TIME_MIX_DECAY_W1,
LLM_TENSOR_TIME_MIX_DECAY_W2,
LLM_TENSOR_TIME_MIX_KEY,
LLM_TENSOR_TIME_MIX_VALUE,
LLM_TENSOR_TIME_MIX_RECEPTANCE,
LLM_TENSOR_TIME_MIX_GATE,
LLM_TENSOR_TIME_MIX_LN,
LLM_TENSOR_TIME_MIX_OUTPUT,
LLM_TENSOR_CHANNEL_MIX_LERP_K,
LLM_TENSOR_CHANNEL_MIX_LERP_R,
LLM_TENSOR_CHANNEL_MIX_KEY,
LLM_TENSOR_CHANNEL_MIX_RECEPTANCE,
LLM_TENSOR_CHANNEL_MIX_VALUE,
LLM_TENSOR_ATTN_Q_A,
LLM_TENSOR_ATTN_Q_B,
LLM_TENSOR_ATTN_KV_A_MQA,
LLM_TENSOR_ATTN_KV_B,
LLM_TENSOR_ATTN_Q_A_NORM,
LLM_TENSOR_ATTN_KV_A_NORM,
LLM_TENSOR_ATTN_SUB_NORM,
LLM_TENSOR_FFN_SUB_NORM,
LLM_TENSOR_DEC_ATTN_NORM,
LLM_TENSOR_DEC_ATTN_Q,
LLM_TENSOR_DEC_ATTN_K,
LLM_TENSOR_DEC_ATTN_V,
LLM_TENSOR_DEC_ATTN_OUT,
LLM_TENSOR_DEC_ATTN_REL_B,
LLM_TENSOR_DEC_CROSS_ATTN_NORM,
LLM_TENSOR_DEC_CROSS_ATTN_Q,
LLM_TENSOR_DEC_CROSS_ATTN_K,
LLM_TENSOR_DEC_CROSS_ATTN_V,
LLM_TENSOR_DEC_CROSS_ATTN_OUT,
LLM_TENSOR_DEC_CROSS_ATTN_REL_B,
LLM_TENSOR_DEC_FFN_NORM,
LLM_TENSOR_DEC_FFN_GATE,
LLM_TENSOR_DEC_FFN_DOWN,
LLM_TENSOR_DEC_FFN_UP,
LLM_TENSOR_DEC_OUTPUT_NORM,
LLM_TENSOR_ENC_ATTN_NORM,
LLM_TENSOR_ENC_ATTN_Q,
LLM_TENSOR_ENC_ATTN_K,
LLM_TENSOR_ENC_ATTN_V,
LLM_TENSOR_ENC_ATTN_OUT,
LLM_TENSOR_ENC_ATTN_REL_B,
LLM_TENSOR_ENC_FFN_NORM,
LLM_TENSOR_ENC_FFN_GATE,
LLM_TENSOR_ENC_FFN_DOWN,
LLM_TENSOR_ENC_FFN_UP,
LLM_TENSOR_ENC_OUTPUT_NORM,
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
LLM_TENSOR_BSKCN_TV,
LLM_TENSOR_CROSS_ATTN_K_NORM,
LLM_TENSOR_CROSS_ATTN_K_PROJ,
LLM_TENSOR_CROSS_ATTN_O_PROJ,
LLM_TENSOR_CROSS_ATTN_Q_NORM,
LLM_TENSOR_CROSS_ATTN_Q_PROJ,
LLM_TENSOR_CROSS_ATTN_V_PROJ,
LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
LLM_TENSOR_CROSS_ATTN_MLP_GATE,
LLM_TENSOR_CONV1D,
LLM_TENSOR_CONVNEXT_DW,
LLM_TENSOR_CONVNEXT_NORM,
LLM_TENSOR_CONVNEXT_PW1,
LLM_TENSOR_CONVNEXT_PW2,
LLM_TENSOR_CONVNEXT_GAMMA,
LLM_TENSOR_POS_NET_CONV1,
LLM_TENSOR_POS_NET_CONV2,
LLM_TENSOR_POS_NET_NORM,
LLM_TENSOR_POS_NET_NORM1,
LLM_TENSOR_POS_NET_NORM2,
LLM_TENSOR_POS_NET_ATTN_NORM,
LLM_TENSOR_POS_NET_ATTN_Q,
LLM_TENSOR_POS_NET_ATTN_K,
LLM_TENSOR_POS_NET_ATTN_V,
LLM_TENSOR_POS_NET_ATTN_OUT,
};
enum llm_tensor_layer {
LLM_TENSOR_LAYER_INPUT,
LLM_TENSOR_LAYER_REPEATING,
LLM_TENSOR_LAYER_OUTPUT,
};
struct LLM_KV {
LLM_KV(llm_arch arch, const char * suffix = nullptr);
llm_arch arch;
const char * suffix;
std::string operator()(llm_kv kv) const;
};
// helper to handle gguf constants
// usage:
//
// const auto tn = LLM_TN(LLM_ARCH_LLAMA);
//
// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
//
struct LLM_TN_IMPL {
const llm_arch arch;
const llm_tensor tensor;
const char * const suffix;
const int bid;
const int xid;
std::string str() const;
operator std::string() const {
return str();
}
friend bool operator==(const std::string & str, const LLM_TN_IMPL & tn) {
return str == tn.str();
}
friend bool operator!=(const std::string & str, const LLM_TN_IMPL & tn) {
return str != tn.str();
}
};
struct LLM_TN {
LLM_TN(llm_arch arch) : arch(arch) {}
llm_arch arch;
LLM_TN_IMPL operator()(llm_tensor tensor, const char * suffix, int bid = -1, int xid = -1) const {
return { arch, tensor, suffix, bid, xid };
}
LLM_TN_IMPL operator()(llm_tensor tensor, int bid = -1, int xid = -1) const {
return { arch, tensor, nullptr, bid, xid };
}
};
struct llm_tensor_info {
llm_tensor_layer layer;
ggml_op op;
};
const char * llm_arch_name(llm_arch arch);
llm_arch llm_arch_from_string(const std::string & name);
const llm_tensor_info & llm_tensor_info_for(llm_tensor tensor);