mirror of
https://github.com/ollama/ollama.git
synced 2025-05-16 06:24:52 +02:00
For some multimodal models (such as gemma3), we create a single graph that generates the image embedding and then use this in the text model. The embedding tensor is completely opaque to the runner. However, this doesn't work if we need to use the embedding in multiple batches. This can arise if the embedding is larger than the batch size. In these cases (as with llama4), we would like to create views that are more appropriately sized. However, if we do this then the original source tensor is used in multiple graphs, which isn't allowed. To avoid that problem, models with this pattern compute the embedding tensor on first use and recreate the individual views. There is no longer a single vision and text graph. This codifies the pattern of separating vision and text graphs. The logic of computing tensors on demand is moved to the runner, so models no longer have to worry about this. It also gives the runner visibility into the multimodal tensors, which is important for memory management.
184 lines
6 KiB
Go
184 lines
6 KiB
Go
package mistral3
|
|
|
|
import (
|
|
"bytes"
|
|
"image"
|
|
"slices"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.BytePairEncoding
|
|
|
|
*TextModel
|
|
*VisionModel `gguf:"v,vision"`
|
|
*MultiModalProjector `gguf:"mm"`
|
|
|
|
ImageProcessor
|
|
}
|
|
|
|
// Implement MultimodalProcessor interface
|
|
var _ model.MultimodalProcessor = (*Model)(nil)
|
|
|
|
// Implement TextProcessor interface
|
|
var _ model.TextProcessor = (*Model)(nil)
|
|
|
|
func New(c fs.Config) (model.Model, error) {
|
|
textModel, err := NewTextModel(c)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
m := &Model{
|
|
TextModel: textModel,
|
|
VisionModel: newVisionModel(c),
|
|
ImageProcessor: newImageProcessor(c),
|
|
MultiModalProjector: newMultiModalProjector(c),
|
|
BytePairEncoding: model.NewBytePairEncoding(
|
|
c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
|
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id", 1)),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id", 2)),
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
// TODO: set EOT to EOS otherwise 0 will stop generation
|
|
EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
|
AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
},
|
|
),
|
|
}
|
|
|
|
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
|
|
|
|
return m, nil
|
|
}
|
|
|
|
type PatchMerger struct {
|
|
MergingLayer *nn.Linear `gguf:"merging_layer"`
|
|
}
|
|
|
|
func (pm *PatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point, spatialMergeSize int) ml.Tensor {
|
|
d := visionOutputs.Dim(0)
|
|
imageGrid := visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Reshape(ctx, size.X, size.Y, d)
|
|
kernel := ctx.Input().Empty(ml.DTypeF32, spatialMergeSize, spatialMergeSize, d)
|
|
patches := kernel.IM2Col(ctx, imageGrid, spatialMergeSize, spatialMergeSize, 0, 0, 1, 1)
|
|
reshaped := patches.Reshape(ctx, d*spatialMergeSize*spatialMergeSize, patches.Dim(1)*patches.Dim(2))
|
|
return pm.MergingLayer.Forward(ctx, reshaped)
|
|
}
|
|
|
|
type MultiModalProjector struct {
|
|
Norm *nn.RMSNorm `gguf:"norm"`
|
|
Linear1 *nn.Linear `gguf:"linear_1"`
|
|
Linear2 *nn.Linear `gguf:"linear_2"`
|
|
PatchMerger *PatchMerger `gguf:"patch_merger"`
|
|
|
|
spatialMergeSize int
|
|
eps float32
|
|
patchSize int
|
|
}
|
|
|
|
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point) (ml.Tensor, image.Point) {
|
|
visionOutputs = p.Norm.Forward(ctx, visionOutputs, p.eps)
|
|
patchSizes := image.Point{size.X / p.patchSize, size.Y / p.patchSize}
|
|
visionOutputs = p.PatchMerger.Forward(ctx, visionOutputs, patchSizes, p.spatialMergeSize)
|
|
visionOutputs = p.Linear1.Forward(ctx, visionOutputs)
|
|
visionOutputs = visionOutputs.GELU(ctx)
|
|
return p.Linear2.Forward(ctx, visionOutputs), image.Point{patchSizes.X / p.spatialMergeSize, patchSizes.Y / p.spatialMergeSize}
|
|
}
|
|
|
|
func newMultiModalProjector(c fs.Config) *MultiModalProjector {
|
|
return &MultiModalProjector{
|
|
spatialMergeSize: int(c.Uint("spatial_merge_size", 2)),
|
|
eps: c.Float("text_config.rms_norm_eps", 1e-5),
|
|
patchSize: int(c.Uint("vision.patch_size", 14)),
|
|
}
|
|
}
|
|
|
|
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
|
|
if len(m.VisionModel.Layers) == 0 {
|
|
return nil, model.ErrNoVisionModel
|
|
}
|
|
|
|
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
f32s, size, err := m.ImageProcessor.ProcessImage(image)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pixelValues, err := ctx.Input().FromFloatSlice(f32s, size.X, size.Y, m.ImageProcessor.numChannels)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
|
|
features, size := m.MultiModalProjector.Forward(ctx, visionOutputs, size)
|
|
|
|
// split into patches to be sent to the text transformer
|
|
rows := make([]input.Multimodal, size.Y)
|
|
for i := range rows {
|
|
rows[i].Tensor = features.View(ctx, features.Stride(1)*size.X*i, features.Dim(0), features.Stride(1), size.X)
|
|
}
|
|
|
|
return rows, nil
|
|
}
|
|
|
|
// PostTokenize arranges Mistral 3's inputs for the forward pass
|
|
// In Mistral 3 and Pixtral, the input patches are arranged as follows:
|
|
// [IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_END]
|
|
// Each sequence of [IMG]...[IMG] is a set of patches of vision embeddings
|
|
// that can be processed together.
|
|
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
|
var result []input.Input
|
|
for _, inp := range inputs {
|
|
if len(inp.Multimodal) == 0 {
|
|
result = append(result, inp)
|
|
} else {
|
|
for i, row := range inp.Multimodal {
|
|
// [IMG]
|
|
result = append(result, input.Input{Token: 10, Multimodal: []input.Multimodal{{Tensor: row.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: row.Tensor.Dim(1)})
|
|
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.Tensor.Dim(1)-1)...)
|
|
if i == len(inp.Multimodal)-1 {
|
|
// [IMG_END]
|
|
result = append(result, input.Input{Token: 13})
|
|
} else {
|
|
// [IMG_BREAK]
|
|
result = append(result, input.Input{Token: 12})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result, nil
|
|
}
|
|
|
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("mistral3", New)
|
|
}
|