mirror of
https://github.com/ollama/ollama.git
synced 2025-05-15 14:03:53 +02:00
For some multimodal models (such as gemma3), we create a single graph that generates the image embedding and then use this in the text model. The embedding tensor is completely opaque to the runner. However, this doesn't work if we need to use the embedding in multiple batches. This can arise if the embedding is larger than the batch size. In these cases (as with llama4), we would like to create views that are more appropriately sized. However, if we do this then the original source tensor is used in multiple graphs, which isn't allowed. To avoid that problem, models with this pattern compute the embedding tensor on first use and recreate the individual views. There is no longer a single vision and text graph. This codifies the pattern of separating vision and text graphs. The logic of computing tensors on demand is moved to the runner, so models no longer have to worry about this. It also gives the runner visibility into the multimodal tensors, which is important for memory management.
318 lines
7.8 KiB
Go
318 lines
7.8 KiB
Go
package model
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
_ "image/jpeg"
|
|
_ "image/png"
|
|
"log/slog"
|
|
"os"
|
|
"reflect"
|
|
"strconv"
|
|
"strings"
|
|
|
|
_ "golang.org/x/image/bmp"
|
|
_ "golang.org/x/image/tiff"
|
|
_ "golang.org/x/image/webp"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
fsggml "github.com/ollama/ollama/fs/ggml"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/logutil"
|
|
"github.com/ollama/ollama/ml"
|
|
_ "github.com/ollama/ollama/ml/backend"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
var ErrNoVisionModel = errors.New("this model is missing data required for image input")
|
|
|
|
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
|
|
type Model interface {
|
|
Forward(ml.Context, input.Batch) (ml.Tensor, error)
|
|
|
|
Backend() ml.Backend
|
|
Config() config
|
|
}
|
|
|
|
// MultimodalProcessor must be implemented by multimodal models.
|
|
type MultimodalProcessor interface {
|
|
// EncodeMultimodal processes a single input (such as an image) and
|
|
// generates an output (typically an embedding) that can be used by the model.
|
|
//
|
|
// The return value is one or more tensors, each with optional model-specific
|
|
// opaque metadata. Typically, the tensors might be views into an embedding
|
|
// with each view representing a chunk of data that can be processed independently
|
|
// in different batches.
|
|
//
|
|
// The result may be cached by the runner.
|
|
EncodeMultimodal(ml.Context, []byte) ([]input.Multimodal, error)
|
|
|
|
// PostTokenize is called after tokenization to allow the model to edit the
|
|
// input stream to correctly arrange multimodal elements.
|
|
//
|
|
// The input is a slice of tokens with the results of EncodeMultimodal interleaved
|
|
// in the order that the user provided them. Each element of the slice will be
|
|
// either a single token or single multimodal object.
|
|
//
|
|
// The model must ensure that inputs are stored according to how they will be
|
|
// processed and stored in the cache. For example, Llava-style models should insert
|
|
// placeholder tokens equal to the feature size of the corresponding image with
|
|
// the image itself attached to and split across these tokens. When Forward is called
|
|
// a partial subset of these tokens may be submitted according to the batch size.
|
|
//
|
|
// This function is also responsible for updating MultimodalHash for any Multimodal
|
|
// that is modified to ensure that there is a unique hash value that accurately
|
|
// represents the contents.
|
|
PostTokenize([]input.Input) ([]input.Input, error)
|
|
}
|
|
|
|
// Base implements the common fields and methods for all models
|
|
type Base struct {
|
|
b ml.Backend
|
|
config
|
|
}
|
|
|
|
type config struct {
|
|
Cache kvcache.Cache
|
|
}
|
|
|
|
// Backend returns the underlying backend that will run the model
|
|
func (m *Base) Backend() ml.Backend {
|
|
return m.b
|
|
}
|
|
|
|
func (m *Base) Config() config {
|
|
return m.config
|
|
}
|
|
|
|
var models = make(map[string]func(fs.Config) (Model, error))
|
|
|
|
// Register registers a model constructor for the given architecture
|
|
func Register(name string, f func(fs.Config) (Model, error)) {
|
|
if _, ok := models[name]; ok {
|
|
panic("model: model already registered")
|
|
}
|
|
|
|
models[name] = f
|
|
}
|
|
|
|
// New initializes a new model instance with the provided configuration based on the metadata in the model file
|
|
func New(ctx context.Context, modelPath string, params ml.BackendParams) (Model, error) {
|
|
r, err := os.Open(modelPath)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer r.Close()
|
|
|
|
b, err := ml.NewBackend(ctx, r, params)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
arch := b.Config().Architecture()
|
|
f, ok := models[arch]
|
|
if !ok {
|
|
return nil, fmt.Errorf("unsupported model architecture %q", arch)
|
|
}
|
|
|
|
m, err := f(b.Config())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
base := Base{b: b, config: m.Config()}
|
|
|
|
v := reflect.ValueOf(m)
|
|
v.Elem().Set(populateFields(base, v.Elem()))
|
|
return m, nil
|
|
}
|
|
|
|
func NewTextProcessor(s string) (TextProcessor, error) {
|
|
r, err := os.Open(s)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer r.Close()
|
|
meta, _, err := fsggml.Decode(r, -1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return getTextProcessor(meta.KV())
|
|
}
|
|
|
|
func getTextProcessor(kv fsggml.KV) (TextProcessor, error) {
|
|
arch := kv.Architecture()
|
|
f, ok := models[arch]
|
|
if !ok {
|
|
return nil, fmt.Errorf("unsupported model architecture %q", arch)
|
|
}
|
|
m, err := f(kv)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
tp, ok := m.(TextProcessor)
|
|
if !ok {
|
|
return nil, fmt.Errorf("%v is not a TextProcessor", m)
|
|
}
|
|
return tp, nil
|
|
}
|
|
|
|
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
|
|
t := v.Type()
|
|
|
|
if t.Kind() == reflect.Struct {
|
|
allNil := true
|
|
for i := range t.NumField() {
|
|
tt := t.Field(i).Type
|
|
vv := v.Field(i)
|
|
if !vv.CanSet() {
|
|
continue
|
|
}
|
|
|
|
// make a copy
|
|
tagsCopy := tags
|
|
if tag := t.Field(i).Tag.Get("gguf"); tag != "" {
|
|
tagsCopy = append(tagsCopy, ParseTags(tag))
|
|
}
|
|
|
|
if tt == reflect.TypeOf((*Base)(nil)).Elem() {
|
|
vv.Set(reflect.ValueOf(base))
|
|
} else if tt == reflect.TypeOf((*ml.Tensor)(nil)).Elem() {
|
|
var fn func([]Tag) [][]string
|
|
fn = func(tags []Tag) (values [][]string) {
|
|
if len(tags) < 1 {
|
|
return nil
|
|
}
|
|
|
|
values = [][]string{{tags[0].Name}}
|
|
for _, alt := range tags[0].Alternate {
|
|
values = append(values, []string{alt})
|
|
}
|
|
|
|
for i, value := range values {
|
|
for _, rest := range fn(tags[1:]) {
|
|
value = append(value, rest...)
|
|
}
|
|
|
|
values[i] = value
|
|
}
|
|
|
|
return values
|
|
}
|
|
|
|
names := fn(tagsCopy)
|
|
for _, name := range names {
|
|
if tensor := base.Backend().Get(strings.Join(name, ".")); tensor != nil {
|
|
slog.Log(context.TODO(), logutil.LevelTrace, "found tensor", "", tensor)
|
|
vv.Set(reflect.ValueOf(tensor))
|
|
break
|
|
}
|
|
}
|
|
} else if tt.Kind() == reflect.Pointer || tt.Kind() == reflect.Interface {
|
|
setPointer(base, vv, tagsCopy)
|
|
} else if tt.Kind() == reflect.Slice || tt.Kind() == reflect.Array {
|
|
for i := range vv.Len() {
|
|
vvv := vv.Index(i)
|
|
if vvv.Kind() == reflect.Pointer || vvv.Kind() == reflect.Interface {
|
|
setPointer(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)}))
|
|
} else {
|
|
vvv.Set(populateFields(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)})...))
|
|
}
|
|
}
|
|
}
|
|
|
|
if !canNil(tt) || !vv.IsNil() {
|
|
allNil = false
|
|
}
|
|
}
|
|
|
|
if allNil {
|
|
return reflect.Zero(t)
|
|
}
|
|
}
|
|
|
|
return v
|
|
}
|
|
|
|
func setPointer(base Base, v reflect.Value, tags []Tag) {
|
|
vv := v
|
|
if v.Kind() == reflect.Interface {
|
|
if v.IsNil() {
|
|
return
|
|
}
|
|
|
|
vv = vv.Elem()
|
|
}
|
|
|
|
vv = vv.Elem()
|
|
if v.IsNil() {
|
|
vv = reflect.New(v.Type().Elem()).Elem()
|
|
}
|
|
|
|
if f := populateFields(base, vv, tags...); f.CanAddr() {
|
|
v.Set(f.Addr())
|
|
}
|
|
}
|
|
|
|
type Tag struct {
|
|
Name string
|
|
Alternate []string
|
|
}
|
|
|
|
func ParseTags(s string) (tag Tag) {
|
|
parts := strings.Split(s, ",")
|
|
if len(parts) > 0 {
|
|
tag.Name = parts[0]
|
|
|
|
for _, part := range parts[1:] {
|
|
if value, ok := strings.CutPrefix(part, "alt:"); ok {
|
|
tag.Alternate = append(tag.Alternate, value)
|
|
}
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func canNil(t reflect.Type) bool {
|
|
return t.Kind() == reflect.Chan ||
|
|
t.Kind() == reflect.Func ||
|
|
t.Kind() == reflect.Interface ||
|
|
t.Kind() == reflect.Map ||
|
|
t.Kind() == reflect.Pointer ||
|
|
t.Kind() == reflect.Slice
|
|
}
|
|
|
|
func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Tensor, error) {
|
|
if len(batch.Positions) != len(batch.Sequences) {
|
|
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(batch.Positions), len(batch.Sequences))
|
|
}
|
|
|
|
if len(batch.Positions) < 1 {
|
|
return nil, errors.New("batch size cannot be less than 1")
|
|
}
|
|
|
|
var err error
|
|
batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
cache := m.Config().Cache
|
|
if cache != nil {
|
|
err := cache.StartForward(ctx, batch, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
t, err := m.Forward(ctx, batch)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
ctx.Forward(t).Compute(t)
|
|
|
|
return t, nil
|
|
}
|