mirror of
https://github.com/ollama/ollama.git
synced 2025-05-17 15:04:26 +02:00
160 lines
4.6 KiB
Go
160 lines
4.6 KiB
Go
package convert
|
|
|
|
import (
|
|
"strings"
|
|
|
|
"github.com/ollama/ollama/fs/ggml"
|
|
"github.com/pdevine/tensor"
|
|
"github.com/pdevine/tensor/native"
|
|
)
|
|
|
|
type mllamaModel struct {
|
|
ModelParameters
|
|
TextModel struct {
|
|
llamaModel
|
|
|
|
CrossAttentionLayers []int32 `json:"cross_attention_layers"`
|
|
} `json:"text_config"`
|
|
VisionModel struct {
|
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
|
NumGlobalLayers uint32 `json:"num_global_layers"`
|
|
IntermediateLayersIndices []int32 `json:"intermediate_layers_indices"`
|
|
|
|
HiddenSize uint32 `json:"hidden_size"`
|
|
IntermediateSize uint32 `json:"intermediate_size"`
|
|
|
|
AttentionHeads uint32 `json:"attention_heads"`
|
|
|
|
ImageSize uint32 `json:"image_size"`
|
|
PatchSize uint32 `json:"patch_size"`
|
|
NumChannels uint32 `json:"num_channels"`
|
|
MaxNumTiles uint32 `json:"max_num_tiles"`
|
|
NormEpsilon float32 `json:"norm_eps"`
|
|
RopeTheta float32 `json:"rope.freq_base"`
|
|
} `json:"vision_config"`
|
|
}
|
|
|
|
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
|
|
kv := m.ModelParameters.KV(t)
|
|
kv["general.architecture"] = "mllama"
|
|
|
|
for k, v := range m.TextModel.KV(t) {
|
|
if strings.HasPrefix(k, "llama.") {
|
|
kv[strings.ReplaceAll(k, "llama.", "mllama.")] = v
|
|
}
|
|
}
|
|
|
|
kv["mllama.attention.cross_attention_layers"] = m.TextModel.CrossAttentionLayers
|
|
|
|
kv["mllama.vision.block_count"] = m.VisionModel.NumHiddenLayers
|
|
kv["mllama.vision.global.block_count"] = m.VisionModel.NumGlobalLayers
|
|
kv["mllama.vision.intermediate_layers_indices"] = m.VisionModel.IntermediateLayersIndices
|
|
|
|
kv["mllama.vision.embedding_length"] = m.VisionModel.HiddenSize
|
|
kv["mllama.vision.feed_forward_length"] = m.VisionModel.IntermediateSize
|
|
|
|
kv["mllama.vision.attention.head_count"] = m.VisionModel.AttentionHeads
|
|
kv["mllama.vision.attention.layer_norm_epsilon"] = m.VisionModel.NormEpsilon
|
|
|
|
kv["mllama.vision.image_size"] = m.VisionModel.ImageSize
|
|
kv["mllama.vision.patch_size"] = m.VisionModel.PatchSize
|
|
kv["mllama.vision.max_num_tiles"] = m.VisionModel.MaxNumTiles
|
|
kv["mllama.vision.num_channels"] = m.VisionModel.NumChannels
|
|
|
|
return kv
|
|
}
|
|
|
|
func (m *mllamaModel) Replacements() []string {
|
|
return append(
|
|
m.TextModel.Replacements(),
|
|
"language_model.", "",
|
|
"gate_attn", "attn_gate",
|
|
"gate_ffn", "ffn_gate",
|
|
"cross_attn.", "cross_attn_",
|
|
"vision_model", "v",
|
|
"class_embedding", "class_embd",
|
|
"patch_embedding", "patch_embd",
|
|
"gated_positional_embedding.tile_embedding", "tile_position_embd",
|
|
"gated_positional_embedding.embedding", "position_embd.weight",
|
|
"gated_positional_embedding", "position_embd",
|
|
"embedding.weight", "weight",
|
|
"pre_tile_positional_embedding", "pre_tile_position_embd",
|
|
"post_tile_positional_embedding", "post_tile_position_embd",
|
|
"layernorm_pre", "pre_ln",
|
|
"layernorm_post", "post_ln",
|
|
"global_transformer.layers", "global.blk",
|
|
"transformer.layers", "blk",
|
|
"mlp.fc1", "ffn_up",
|
|
"mlp.fc2", "ffn_down",
|
|
"multi_modal_projector", "mm.0",
|
|
)
|
|
}
|
|
|
|
func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
|
var out []*ggml.Tensor
|
|
var text []Tensor
|
|
for _, t := range ts {
|
|
if t.Name() == "v.position_embd.gate" {
|
|
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
|
|
tt := t.Clone()
|
|
tt.SetRepacker(m.repack(name))
|
|
out = append(out, &ggml.Tensor{
|
|
Name: name,
|
|
Kind: t.Kind(),
|
|
Shape: t.Shape(),
|
|
WriterTo: tt,
|
|
})
|
|
}
|
|
} else if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
|
|
t.SetRepacker(m.repack(t.Name()))
|
|
out = append(out, &ggml.Tensor{
|
|
Name: t.Name(),
|
|
Kind: t.Kind(),
|
|
Shape: t.Shape(),
|
|
WriterTo: t,
|
|
})
|
|
} else if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
|
|
out = append(out, &ggml.Tensor{
|
|
Name: t.Name(),
|
|
Kind: t.Kind(),
|
|
Shape: t.Shape(),
|
|
WriterTo: t,
|
|
})
|
|
} else {
|
|
text = append(text, t)
|
|
}
|
|
}
|
|
|
|
return append(out, m.TextModel.Tensors(text)...)
|
|
}
|
|
|
|
func (m *mllamaModel) repack(name string) Repacker {
|
|
return func(_ string, data []float32, shape []uint64) (_ []float32, err error) {
|
|
dims := make([]int, len(shape))
|
|
for i, dim := range shape {
|
|
dims[i] = int(dim)
|
|
}
|
|
|
|
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
|
|
|
t, err = tensor.Tanh(t)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if name == "v.position_embd.gate" {
|
|
t, err = tensor.Sub(float32(1), t)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
t = tensor.Materialize(t)
|
|
// flatten tensor so it can be return as a vector
|
|
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return native.VectorF32(t.(*tensor.Dense))
|
|
}
|
|
}
|