ollama/model/models/mllama/process_image.go

222 lines
5.9 KiB
Go

package mllama
import (
"image"
"math"
"slices"
"golang.org/x/image/draw"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/model/imageproc"
)
type supportedAspectRatio struct {
rank, width, height int
}
func (a supportedAspectRatio) Point() image.Point {
return image.Point{a.width, a.height}
}
func (a supportedAspectRatio) numTiles() int {
return a.width * a.height
}
type ImageProcessor struct {
imageSize, numChannels, maxNumTiles int
mean, std [3]float32
}
func newImageProcessor(c fs.Config) ImageProcessor {
return ImageProcessor{
imageSize: int(c.Uint("vision.image_size")),
numChannels: int(c.Uint("vision.num_channels")),
maxNumTiles: int(c.Uint("vision.max_num_tiles")),
mean: imageproc.ClipDefaultMean,
std: imageproc.ClipDefaultSTD,
}
}
func (p ImageProcessor) supportedAspectRatios() (ratios []supportedAspectRatio) {
for w := 1; w <= p.maxNumTiles; w++ {
for h := 1; h <= p.maxNumTiles/w; h++ {
ratios = append(ratios, supportedAspectRatio{len(ratios) + 1, w, h})
}
}
return ratios
}
func (p ImageProcessor) fitToCanvas(imageSize, canvasSize image.Point) image.Point {
tw := min(max(imageSize.X, p.imageSize), canvasSize.X)
th := min(max(imageSize.Y, p.imageSize), canvasSize.Y)
r := math.Min(
float64(tw)/float64(imageSize.X),
float64(th)/float64(imageSize.Y),
)
w := min(int(math.Floor(float64(imageSize.X)*r)), tw)
h := min(int(math.Floor(float64(imageSize.Y)*r)), th)
return image.Point{w, h}
}
func (p ImageProcessor) optimalTiledCanvas(imageSize image.Point) image.Point {
possibleTileArrangements := p.supportedAspectRatios()
possibleCanvasSizes := make([]image.Point, len(possibleTileArrangements))
for i, pta := range possibleTileArrangements {
possibleCanvasSizes[i] = image.Point{pta.width * p.imageSize, pta.height * p.imageSize}
}
scales := make([]float64, len(possibleCanvasSizes))
for i, pcs := range possibleCanvasSizes {
scales[i] = min(
float64(pcs.Y)/float64(imageSize.Y),
float64(pcs.X)/float64(imageSize.X),
)
}
var minUpscale float64
var maxDownscale float64
var upscale bool
for _, s := range scales {
if s > 1.0 {
upscale = true
if minUpscale == 0 {
minUpscale = s
} else {
minUpscale = math.Min(minUpscale, s)
}
} else {
maxDownscale = math.Max(maxDownscale, s)
}
}
selectedScale := maxDownscale
if upscale {
selectedScale = minUpscale
}
var selectedCanvas image.Point
for n, pcs := range possibleCanvasSizes {
if scales[n] == selectedScale {
// choose the smallest possible canvas
if selectedCanvas.X == 0 && selectedCanvas.Y == 0 {
selectedCanvas = pcs
} else if pcs.X*pcs.Y < selectedCanvas.X*selectedCanvas.Y {
selectedCanvas = pcs
}
}
}
return selectedCanvas
}
func (p ImageProcessor) splitToTiles(img image.Image, numTilesSize image.Point) []image.Image {
b := img.Bounds()
width := b.Max.X - b.Min.X
height := b.Max.Y - b.Min.Y
tileHeight := height / numTilesSize.Y
tileWidth := width / numTilesSize.X
images := make([]image.Image, 0, numTilesSize.Y*numTilesSize.X)
for h := range numTilesSize.Y {
for w := range numTilesSize.X {
rect := image.Rect(tileWidth*w, tileHeight*h, tileWidth*(w+1), tileHeight*(h+1))
if subImg, ok := img.(interface {
SubImage(image.Rectangle) image.Image
}); ok {
images = append(images, subImg.SubImage(rect))
} else {
// Handle the case where img does not implement SubImage
// This is a fallback and may not be efficient
newImg := image.NewRGBA(rect)
draw.Draw(newImg, rect, img, rect.Min, draw.Src)
images = append(images, newImg)
}
}
}
return images
}
func (p ImageProcessor) resize(img image.Image) (image.Image, image.Point) {
b := img.Bounds()
canvasSize := p.optimalTiledCanvas(b.Max)
aspectRatio := image.Point{canvasSize.X / p.imageSize, canvasSize.Y / p.imageSize}
newSize := p.fitToCanvas(b.Max, canvasSize)
dst := image.NewRGBA(image.Rect(0, 0, newSize.X, newSize.Y))
// scaling choices:
// NearestNeighbor fast, blocky output
// ApproxBiLinear fast, medium quality
// BiLinear slow, high quality
// CatmullRom very slow, very high quality
draw.BiLinear.Scale(dst, dst.Rect, img, b, draw.Over, nil)
return dst, aspectRatio
}
func (p ImageProcessor) pad(img image.Image, aspectRatio image.Point) image.Image {
paddedSize := image.Point{
X: p.imageSize * aspectRatio.X,
Y: p.imageSize * aspectRatio.Y,
}
dst := image.NewRGBA(image.Rect(0, 0, paddedSize.X, paddedSize.Y))
draw.Draw(dst, img.Bounds(), img, image.Point{0, 0}, draw.Over)
return dst
}
func (p ImageProcessor) pack(img image.Image, aspectRatio image.Point) []float32 {
subImages := p.splitToTiles(img, aspectRatio)
var pixelVals []float32
for _, subImg := range subImages {
bounds := subImg.Bounds()
var rVals, gVals, bVals []float32
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
c := subImg.At(x, y)
r, g, b, _ := c.RGBA()
rVal := float32(r>>8) / 255.0
gVal := float32(g>>8) / 255.0
bVal := float32(b>>8) / 255.0
rVal = (rVal - p.mean[0]) / p.std[0]
gVal = (gVal - p.mean[1]) / p.std[1]
bVal = (bVal - p.mean[2]) / p.std[2]
rVals = append(rVals, rVal)
gVals = append(gVals, gVal)
bVals = append(bVals, bVal)
}
}
pixelVals = append(pixelVals, rVals...)
pixelVals = append(pixelVals, gVals...)
pixelVals = append(pixelVals, bVals...)
}
return pixelVals
}
func (p ImageProcessor) ProcessImage(img image.Image) ([]float32, supportedAspectRatio, error) {
newImage, newImageRatio := p.resize(img)
newImage = p.pad(newImage, newImageRatio)
pixelValues := p.pack(newImage, newImageRatio)
supportedAspectRatios := p.supportedAspectRatios()
aspectRatioID := slices.IndexFunc(supportedAspectRatios, func(i supportedAspectRatio) bool {
return i.width == newImageRatio.X && i.height == newImageRatio.Y
})
return pixelValues, supportedAspectRatios[aspectRatioID], nil
}