mirror of
https://github.com/ollama/ollama.git
synced 2025-05-15 05:53:54 +02:00
Mistral is a popular research lab making open source models. This updates the forward pass of llama architecture models to support both llama models and mistral models by accounting for additional metadata present in mistral models, and finding the correct dimensions for the output projection.
1068 lines
26 KiB
Go
1068 lines
26 KiB
Go
package ggml
|
|
|
|
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
|
|
// #include <stdlib.h>
|
|
// #include <stdint.h>
|
|
// #include "ggml.h"
|
|
// #include "ggml-cpu.h"
|
|
// #include "ggml-backend.h"
|
|
import "C"
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"io"
|
|
"log/slog"
|
|
"maps"
|
|
"os"
|
|
"runtime"
|
|
"slices"
|
|
"strconv"
|
|
"strings"
|
|
"sync/atomic"
|
|
"unicode"
|
|
"unsafe"
|
|
|
|
"github.com/ollama/ollama/format"
|
|
"github.com/ollama/ollama/fs"
|
|
fsggml "github.com/ollama/ollama/fs/ggml"
|
|
"github.com/ollama/ollama/ml"
|
|
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
|
"golang.org/x/sync/errgroup"
|
|
)
|
|
|
|
func devices() []*C.struct_ggml_backend_device {
|
|
ggml.OnceLoad()
|
|
ds := make([]*C.struct_ggml_backend_device, C.ggml_backend_dev_count())
|
|
for i := range ds {
|
|
ds[i] = C.ggml_backend_dev_get(C.size_t(i))
|
|
}
|
|
|
|
return ds
|
|
}
|
|
|
|
type Backend struct {
|
|
meta *fsggml.GGML
|
|
sched *C.struct_ggml_backend_sched
|
|
tensors map[string]*C.struct_ggml_tensor
|
|
|
|
// input is the backend used for inputs
|
|
input *C.struct_ggml_backend_buffer_type
|
|
|
|
// layers is the backend used for repeating layers
|
|
layers map[int]*C.struct_ggml_backend_buffer_type
|
|
|
|
flashAttention bool
|
|
|
|
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
|
|
maxGraphNodes int
|
|
}
|
|
|
|
func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
|
meta, n, err := fsggml.Decode(r, -1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
slog.Info(
|
|
"",
|
|
"architecture", meta.KV().Architecture(),
|
|
"file_type", meta.KV().FileType(),
|
|
"name", meta.KV().String("general.name"),
|
|
"description", meta.KV().String("general.description"),
|
|
"num_tensors", len(meta.Tensors().Items()),
|
|
"num_key_values", len(meta.KV()),
|
|
)
|
|
|
|
type deviceBufferType struct {
|
|
d *C.struct_ggml_backend_device
|
|
bts []*C.struct_ggml_backend_buffer_type
|
|
}
|
|
|
|
var cpus, accels, gpus []*C.struct_ggml_backend_device
|
|
for _, d := range devices() {
|
|
switch C.ggml_backend_dev_type(d) {
|
|
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
|
|
if len(cpus) == 0 {
|
|
// only the first cpu device should be used
|
|
cpus = append(cpus, d)
|
|
}
|
|
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
|
accels = append(accels, d)
|
|
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
|
|
gpus = append(gpus, d)
|
|
}
|
|
}
|
|
|
|
// create list of buffer types for the cpu
|
|
cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
|
|
for _, d := range append(accels, append(gpus, cpus...)...) {
|
|
switch C.ggml_backend_dev_type(d) {
|
|
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
|
|
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
|
cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, C.ggml_backend_dev_buffer_type(d))
|
|
}
|
|
}
|
|
|
|
// create list of buffer types for each gpu
|
|
var gpuDeviceBufferTypes []deviceBufferType
|
|
for _, d := range gpus {
|
|
bt := C.ggml_backend_dev_buffer_type(d)
|
|
gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
|
|
d: d,
|
|
bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuDeviceBufferType.bts...),
|
|
})
|
|
}
|
|
|
|
useDefaultSplit := true
|
|
for _, s := range params.TensorSplit {
|
|
if s != 0 {
|
|
useDefaultSplit = false
|
|
break
|
|
}
|
|
}
|
|
|
|
// calculate splits
|
|
splits := make([]float32, len(gpus))
|
|
if useDefaultSplit {
|
|
// default: split on free memory
|
|
for i := range splits {
|
|
var free, total C.size_t
|
|
C.ggml_backend_dev_memory(gpus[i], &free, &total)
|
|
splits[i] = float32(free)
|
|
}
|
|
} else {
|
|
splits = params.TensorSplit
|
|
}
|
|
|
|
var sum float32
|
|
// cumulative sum of all splits
|
|
for i := range splits {
|
|
sum += splits[i]
|
|
splits[i] = sum
|
|
}
|
|
|
|
// normalize splits
|
|
for i := range splits {
|
|
splits[i] /= sum
|
|
}
|
|
|
|
// inputs always use cpu
|
|
input := cpuDeviceBufferType
|
|
|
|
blocks := int(meta.KV().BlockCount())
|
|
|
|
// define a range of gpu layers. anything outside of this range is assigned to the cpu
|
|
gpuRangeStart := max(0, blocks-params.NumGPULayers)
|
|
gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
|
|
assignLayer := func(i int) deviceBufferType {
|
|
if i < gpuRangeStart || i >= gpuRangeStop {
|
|
return cpuDeviceBufferType
|
|
}
|
|
|
|
index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
|
|
if index < 0 || index >= len(gpuDeviceBufferTypes) {
|
|
return cpuDeviceBufferType
|
|
}
|
|
|
|
return gpuDeviceBufferTypes[index]
|
|
}
|
|
|
|
// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
|
|
layers := make([]deviceBufferType, blocks)
|
|
for i := range layers {
|
|
layers[i] = assignLayer(i)
|
|
}
|
|
|
|
// outputs are assigned iff allowed by splits and configured number of gpu layers
|
|
output := assignLayer(blocks)
|
|
|
|
maxTensors := len(meta.Tensors().Items())
|
|
maxTensors += 1
|
|
// each layer has at most 2 extra tensors for rope operations
|
|
maxTensors += blocks * 2
|
|
|
|
type tensor struct {
|
|
source *fsggml.Tensor
|
|
target string
|
|
}
|
|
|
|
// some tensors are mapped to different names so keep a list
|
|
targets := make(map[string][]string)
|
|
|
|
// contexts are shared by tensors of the same buffer type
|
|
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
|
|
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
|
|
for _, bt := range bts {
|
|
if _, ok := ctxs[bt]; !ok {
|
|
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
|
|
mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
|
|
no_alloc: true,
|
|
})
|
|
}
|
|
|
|
targets[t.source.Name] = append(targets[t.source.Name], t.target)
|
|
|
|
name := t.source.Name
|
|
if t.target != "" {
|
|
name = t.target
|
|
}
|
|
|
|
cname := C.CString(name)
|
|
defer C.free(unsafe.Pointer(cname))
|
|
if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
|
|
return tt
|
|
}
|
|
|
|
tt := C.ggml_new_tensor(ctxs[bt], t.source.Kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
|
|
C.ggml_set_name(tt, cname)
|
|
|
|
slog.Debug("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
|
|
//nolint:staticcheck // TODO: check if buffer type supports this tensor
|
|
return tt
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
contains := func(s string, parts ...string) bool {
|
|
split := strings.Split(s, ".")
|
|
for _, part := range parts {
|
|
if slices.Contains(split, part) {
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
for _, t := range meta.Tensors().Items() {
|
|
switch {
|
|
case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
|
|
createTensor(tensor{source: t}, input.bts)
|
|
if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
|
|
createTensor(tensor{source: t, target: "output.weight"}, output.bts)
|
|
}
|
|
case contains(t.Name, "cls", "output", "output_norm"):
|
|
createTensor(tensor{source: t}, output.bts)
|
|
case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
|
|
// TODO: assign vision tensors to the gpu if possible
|
|
createTensor(tensor{source: t}, output.bts)
|
|
case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
|
|
// these tensors should be repeated per layer
|
|
for i, layer := range layers {
|
|
createTensor(tensor{
|
|
source: t,
|
|
target: "blk." + strconv.Itoa(i) + "." + t.Name,
|
|
}, layer.bts)
|
|
}
|
|
default:
|
|
layerIndex := -1
|
|
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
|
|
if i, err := strconv.Atoi(fields[0]); err == nil {
|
|
layerIndex = i
|
|
}
|
|
}
|
|
|
|
if layerIndex >= 0 {
|
|
createTensor(tensor{source: t}, layers[layerIndex].bts)
|
|
} else {
|
|
// load all other tensors on the cpu
|
|
createTensor(tensor{source: t}, input.bts)
|
|
}
|
|
}
|
|
}
|
|
|
|
// allocate buffers for each context
|
|
bbs := make(map[*C.struct_ggml_context]*C.struct_ggml_backend_buffer, len(ctxs))
|
|
for bt, c := range ctxs {
|
|
if C.ggml_get_first_tensor(c) == nil {
|
|
continue
|
|
}
|
|
|
|
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
|
|
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
|
|
bbs[c] = b
|
|
}
|
|
|
|
for bs := range maps.Values(bbs) {
|
|
slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
|
|
}
|
|
|
|
// map tensor names to tensors for easy lookup later
|
|
tensors := make(map[string]*C.struct_ggml_tensor)
|
|
for _, c := range ctxs {
|
|
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
|
|
tensors[C.GoString(C.ggml_get_name(t))] = t
|
|
}
|
|
}
|
|
|
|
var doneBytes atomic.Uint64
|
|
totalBytes := uint64(n) - meta.Tensors().Offset
|
|
|
|
g, ctx := errgroup.WithContext(ctx)
|
|
g.SetLimit(runtime.GOMAXPROCS(0))
|
|
for _, t := range meta.Tensors().Items() {
|
|
g.Go(func() error {
|
|
tts := make([]*C.struct_ggml_tensor, max(1, len(targets[t.Name])))
|
|
for i := range tts {
|
|
target := targets[t.Name][i]
|
|
if target == "" {
|
|
target = t.Name
|
|
}
|
|
|
|
tt, ok := tensors[target]
|
|
if !ok {
|
|
return fmt.Errorf("unassigned tensor: %s", t.Name)
|
|
}
|
|
|
|
tts[i] = tt
|
|
}
|
|
|
|
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset+t.Offset), int64(t.Size()))
|
|
bts := make([]byte, 128*format.KibiByte)
|
|
|
|
var s uint64
|
|
for s < t.Size() {
|
|
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for _, tt := range tts {
|
|
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
|
|
}
|
|
|
|
s += uint64(n)
|
|
|
|
if params.Progress != nil {
|
|
done := doneBytes.Add(uint64(n))
|
|
params.Progress(float32(done) / float32(totalBytes))
|
|
}
|
|
}
|
|
|
|
return nil
|
|
})
|
|
}
|
|
|
|
// start a goroutine to cancel the errgroup if the parent context is done
|
|
go func() {
|
|
<-ctx.Done()
|
|
g.Go(func() error {
|
|
return ctx.Err()
|
|
})
|
|
}()
|
|
|
|
if err := g.Wait(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// map devices to backend buffer types so new tensors can be assigned to the correct device
|
|
deviceBufferTypes := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend_buffer_type)
|
|
|
|
// create backends and buffer types used for the compute graph scheduler
|
|
var schedBackends []*C.struct_ggml_backend
|
|
var schedBufts []*C.struct_ggml_backend_buffer_type
|
|
for _, d := range append(gpus, append(accels, cpus...)...) {
|
|
b := C.ggml_backend_dev_init(d, nil)
|
|
bt := C.ggml_backend_get_default_buffer_type(b)
|
|
if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 {
|
|
// use the first gpu host buffer type for gpu if possible
|
|
if hbt := C.ggml_backend_dev_host_buffer_type(gpus[0]); hbt != nil {
|
|
bt = hbt
|
|
}
|
|
}
|
|
|
|
deviceBufferTypes[d] = bt
|
|
|
|
schedBackends = append(schedBackends, b)
|
|
schedBufts = append(schedBufts, bt)
|
|
|
|
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
|
|
|
|
if C.ggml_backend_is_cpu(b) {
|
|
// set number of threads for cpu backend
|
|
C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
|
|
}
|
|
}
|
|
|
|
maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
|
|
return &Backend{
|
|
flashAttention: params.FlashAttention,
|
|
meta: meta,
|
|
tensors: tensors,
|
|
sched: C.ggml_backend_sched_new(
|
|
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
|
|
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
|
|
C.int(len(schedBackends)),
|
|
C.size_t(maxGraphNodes),
|
|
C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
|
|
),
|
|
input: deviceBufferTypes[input.d],
|
|
layers: func() map[int]*C.struct_ggml_backend_buffer_type {
|
|
m := make(map[int]*C.struct_ggml_backend_buffer_type)
|
|
for i, layer := range layers {
|
|
m[i] = deviceBufferTypes[layer.d]
|
|
}
|
|
return m
|
|
}(),
|
|
maxGraphNodes: maxGraphNodes,
|
|
}, nil
|
|
}
|
|
|
|
func init() {
|
|
ml.RegisterBackend("ggml", New)
|
|
}
|
|
|
|
func (b *Backend) Config() fs.Config {
|
|
return b.meta.KV()
|
|
}
|
|
|
|
func (b *Backend) Get(name string) ml.Tensor {
|
|
if t, ok := b.tensors[name]; ok {
|
|
return &Tensor{b: b, t: t}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (b *Backend) NewContext() ml.Context {
|
|
return b.NewContextSize(b.maxGraphNodes)
|
|
}
|
|
|
|
func (b *Backend) NewContextSize(n int) ml.Context {
|
|
if n > b.maxGraphNodes {
|
|
panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
|
|
}
|
|
|
|
return &Context{
|
|
b: b,
|
|
maxGraphNodes: n,
|
|
ctx: C.ggml_init(C.struct_ggml_init_params{
|
|
mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
|
|
no_alloc: true,
|
|
}),
|
|
}
|
|
}
|
|
|
|
func (b *Backend) CacheConfig() ml.CacheConfig {
|
|
if b.flashAttention {
|
|
return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
|
|
} else {
|
|
return ml.CacheConfig{CachePadding: 32, PermutedV: true}
|
|
}
|
|
}
|
|
|
|
type Context struct {
|
|
b *Backend
|
|
|
|
ctx *C.struct_ggml_context
|
|
graph *C.struct_ggml_cgraph
|
|
|
|
// buft is the buffer type used for new tensors
|
|
buft *C.struct_ggml_backend_buffer_type
|
|
|
|
// maxGraphNodes is the maximum allowed number of graph nodes in this context
|
|
maxGraphNodes int
|
|
}
|
|
|
|
func (c Context) Input() ml.Context {
|
|
if c.b.input != nil {
|
|
return &Context{
|
|
b: c.b,
|
|
ctx: c.ctx,
|
|
buft: c.b.input,
|
|
maxGraphNodes: c.maxGraphNodes,
|
|
}
|
|
}
|
|
|
|
return &c
|
|
}
|
|
|
|
func (c Context) Layer(i int) ml.Context {
|
|
if buft, ok := c.b.layers[i]; ok {
|
|
return &Context{
|
|
b: c.b,
|
|
ctx: c.ctx,
|
|
buft: buft,
|
|
maxGraphNodes: c.maxGraphNodes,
|
|
}
|
|
}
|
|
|
|
return &c
|
|
}
|
|
|
|
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
|
|
if c.graph == nil {
|
|
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
|
|
}
|
|
|
|
for _, tensor := range tensors {
|
|
C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
|
|
}
|
|
|
|
return c
|
|
}
|
|
|
|
func (c Context) Compute(tensors ...ml.Tensor) {
|
|
C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
|
|
C.ggml_backend_sched_reset(c.b.sched)
|
|
|
|
needSync := true
|
|
sync := func() {
|
|
if needSync {
|
|
C.ggml_backend_sched_synchronize(c.b.sched)
|
|
needSync = false
|
|
}
|
|
}
|
|
|
|
for _, t := range tensors {
|
|
if C.ggml_nbytes(t.(*Tensor).t) > 0 {
|
|
t.(*Tensor).sync = sync
|
|
}
|
|
}
|
|
}
|
|
|
|
func (c Context) MaxGraphNodes() int {
|
|
return c.maxGraphNodes
|
|
}
|
|
|
|
func shapeToGGML(shape []int) *C.int64_t {
|
|
sh := make([]C.int64_t, len(shape))
|
|
for i, s := range shape {
|
|
sh[i] = C.int64_t(s)
|
|
}
|
|
|
|
return &sh[0]
|
|
}
|
|
|
|
func pad(length, pad C.size_t) C.size_t {
|
|
return ((length + pad - 1) / pad) * pad
|
|
}
|
|
|
|
func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
|
|
if c.buft == nil {
|
|
panic("set Input, Output, or Layer before creating tensors")
|
|
}
|
|
|
|
var cdtype uint32
|
|
switch dtype {
|
|
case ml.DTypeF32:
|
|
cdtype = C.GGML_TYPE_F32
|
|
case ml.DTypeF16:
|
|
cdtype = C.GGML_TYPE_F16
|
|
case ml.DTypeQ80:
|
|
cdtype = C.GGML_TYPE_Q8_0
|
|
case ml.DTypeQ40:
|
|
cdtype = C.GGML_TYPE_Q4_0
|
|
case ml.DTypeI32:
|
|
cdtype = C.GGML_TYPE_I32
|
|
default:
|
|
panic("unsupported dtype")
|
|
}
|
|
|
|
if len(shape) < 1 || shape[0] == 0 {
|
|
var shape C.int64_t = 0
|
|
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
|
|
} else if len(shape) > 4 {
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
|
|
for _, dim := range shape {
|
|
if dim < 1 {
|
|
panic("invalid shape")
|
|
}
|
|
}
|
|
|
|
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
|
|
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
|
|
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
|
|
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
|
return &Tensor{b: c.b, t: t}
|
|
}
|
|
|
|
func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
|
|
return c.newTensor(dtype, shape)
|
|
}
|
|
|
|
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
|
t := c.newTensor(dtype, shape)
|
|
C.ggml_set_zero(t.(*Tensor).t)
|
|
return t
|
|
}
|
|
|
|
func checkShape[S ~[]E, E any](s S, shape ...int) error {
|
|
n := len(s)
|
|
|
|
if n == 0 {
|
|
return nil
|
|
}
|
|
|
|
for _, v := range shape {
|
|
n /= v
|
|
}
|
|
|
|
if n != 1 {
|
|
return fmt.Errorf("invalid shape: %v", shape)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
|
if err := checkShape(s, shape...); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
t := c.newTensor(ml.DTypeF32, shape)
|
|
if len(s) > 0 {
|
|
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
|
|
}
|
|
|
|
return t, nil
|
|
}
|
|
|
|
func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
|
if err := checkShape(s, shape...); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
t := c.newTensor(ml.DTypeI32, shape)
|
|
if len(s) > 0 {
|
|
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
|
|
}
|
|
|
|
return t, nil
|
|
}
|
|
|
|
func (c *Context) Close() {
|
|
if c != nil {
|
|
C.ggml_free(c.ctx)
|
|
}
|
|
}
|
|
|
|
type Tensor struct {
|
|
b *Backend
|
|
t *C.struct_ggml_tensor
|
|
sync func()
|
|
}
|
|
|
|
func (t *Tensor) LogValue() slog.Value {
|
|
return slog.GroupValue(
|
|
slog.String("name", C.GoString(C.ggml_get_name(t.t))),
|
|
slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
|
|
slog.Any("shape", t.Shape()),
|
|
)
|
|
}
|
|
|
|
func (t *Tensor) Dim(n int) int {
|
|
return int(t.t.ne[n])
|
|
}
|
|
|
|
func (t *Tensor) Stride(n int) int {
|
|
return int(t.t.nb[n])
|
|
}
|
|
|
|
func (t *Tensor) Shape() []int {
|
|
shape := make([]int, C.ggml_n_dims(t.t))
|
|
for i := range shape {
|
|
shape[i] = t.Dim(i)
|
|
}
|
|
|
|
return shape
|
|
}
|
|
|
|
func (t *Tensor) Bytes() (data []byte) {
|
|
if t.sync != nil {
|
|
data = make([]byte, C.ggml_nbytes(t.t))
|
|
|
|
t.sync()
|
|
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (t *Tensor) Floats() (data []float32) {
|
|
if t.sync != nil {
|
|
data = make([]float32, C.ggml_nelements(t.t))
|
|
|
|
t.sync()
|
|
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (t *Tensor) DType() ml.DType {
|
|
switch t.t._type {
|
|
case C.GGML_TYPE_F32:
|
|
return ml.DTypeF32
|
|
case C.GGML_TYPE_F16:
|
|
return ml.DTypeF16
|
|
case C.GGML_TYPE_Q8_0:
|
|
return ml.DTypeQ80
|
|
case C.GGML_TYPE_Q4_0:
|
|
return ml.DTypeQ40
|
|
case C.GGML_TYPE_I32:
|
|
return ml.DTypeI32
|
|
default:
|
|
return ml.DTypeOther
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_neg(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
|
|
if dim < 0 || dim >= C.GGML_MAX_DIMS {
|
|
panic("invalid dimension")
|
|
}
|
|
|
|
shape := make([]C.int64_t, C.GGML_MAX_DIMS)
|
|
for i := range C.GGML_MAX_DIMS {
|
|
if i == dim {
|
|
shape[i] = C.int64_t(t.Dim(i) * n)
|
|
} else {
|
|
shape[i] = C.int64_t(t.Dim(i))
|
|
}
|
|
}
|
|
|
|
tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape))
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
|
|
if len(s) > 0 {
|
|
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
|
|
}
|
|
|
|
return t
|
|
}
|
|
|
|
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
|
|
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: mul,
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
|
|
tt := (&Tensor{b: t.b, t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
|
|
if b != nil {
|
|
tt = tt.Add(ctx, b)
|
|
}
|
|
|
|
return tt
|
|
}
|
|
|
|
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
|
|
return (&Tensor{b: t.b, t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
|
|
}
|
|
|
|
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
|
|
if len(shape) != 4 {
|
|
panic("expected 4 dimensions")
|
|
}
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
|
|
if len(shape) != 4 {
|
|
panic("expected 4 dimensions")
|
|
}
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
|
|
switch len(shape) {
|
|
case 1:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
|
|
}
|
|
case 2:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
|
|
}
|
|
case 3:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
|
|
}
|
|
case 4:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
|
|
}
|
|
default:
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Sin(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_sin(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Cos(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_cos(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
|
|
if len(shape) != 4 {
|
|
panic("expected 4 dimensions")
|
|
}
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
|
switch len(shape) {
|
|
case 1:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
|
|
}
|
|
case 3:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]),
|
|
C.size_t(shape[1]),
|
|
C.size_t(offset)),
|
|
}
|
|
case 5:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
|
|
C.size_t(shape[1]), C.size_t(shape[3]),
|
|
C.size_t(offset)),
|
|
}
|
|
case 7:
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
|
|
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
|
|
C.size_t(offset)),
|
|
}
|
|
default:
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
}
|
|
|
|
const (
|
|
ropeTypeNorm C.int = 0
|
|
ropeTypeNeox C.int = 2
|
|
ropeTypeMrope C.int = 8
|
|
ropeTypeVision C.int = 24
|
|
)
|
|
|
|
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32) ml.Tensor {
|
|
if ropeFactors == nil {
|
|
ropeFactors = &Tensor{b: t.b}
|
|
}
|
|
|
|
dequant := t.t
|
|
if C.ggml_is_quantized(t.t._type) {
|
|
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
|
|
}
|
|
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_rope_ext(
|
|
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
|
|
C.int(ropeDim),
|
|
C.int(ropeType),
|
|
131072, // YaRN n_ctx_train
|
|
C.float(ropeBase),
|
|
C.float(ropeScale),
|
|
0., // YaRN ext_factor
|
|
1., // YaRN attn_factor
|
|
32., // YaRN beta_fast
|
|
1., // YaRN beta_slow
|
|
),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)),
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
|
|
var tt *C.struct_ggml_tensor
|
|
switch len(strides) {
|
|
case 0:
|
|
tt = C.ggml_set_1d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset))
|
|
case 1:
|
|
tt = C.ggml_set_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset), C.size_t(strides[0]))
|
|
default:
|
|
panic("unsupported number of dimensions")
|
|
}
|
|
|
|
return &Tensor{b: t.b, t: tt}
|
|
}
|
|
|
|
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.Tensor, scale float64) ml.Tensor {
|
|
var kqMask *C.struct_ggml_tensor
|
|
if mask != nil {
|
|
kqMask = mask.(*Tensor).t
|
|
}
|
|
|
|
query := t.Permute(ctx, 0, 2, 1, 3)
|
|
key = key.Permute(ctx, 0, 2, 1, 3)
|
|
|
|
if t.b.flashAttention {
|
|
value = value.Permute(ctx, 0, 2, 1, 3)
|
|
|
|
kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
|
|
C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
|
|
return &Tensor{b: t.b, t: kqv}
|
|
} else {
|
|
kq := key.MulmatFullPrec(ctx, query)
|
|
kq = &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
|
|
}
|
|
|
|
kqv := value.Mulmat(ctx, kq)
|
|
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
}
|
|
}
|
|
|
|
func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
|
|
return &Tensor{
|
|
b: t.b,
|
|
t: C.ggml_dup(ctx.(*Context).ctx, t.t),
|
|
}
|
|
}
|