ollama/convert/convert_cohere2.go
Patrick Devine 7571d402fb feed linter
2025-01-17 21:53:57 -08:00

85 lines
2.8 KiB
Go

package convert
import (
"cmp"
"github.com/ollama/ollama/llm"
)
type cohere2Model struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
LayerNormEPS float32 `json:"layer_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
UseQKNorm bool `json:"use_qk_norm"`
MaxLength uint32 `json:"model_max_length"`
LogitScale float32 `json:"logit_scale"`
NCtx uint32 `json:"n_ctx"`
SlidingWindow uint32 `json:"sliding_window"`
HeadDim uint32 `json:"head_dim"`
RotaryPct float32 `json:"rotary_pct"`
VocabSize uint32 `json:"vocab_size"`
}
var _ ModelConverter = (*cohere2Model)(nil)
func (p *cohere2Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "cohere2"
kv["general.name"] = "C4Ai Command R7B"
kv["cohere2.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
kv["cohere2.embedding_length"] = p.HiddenSize
kv["cohere2.block_count"] = p.HiddenLayers
kv["cohere2.feed_forward_length"] = p.IntermediateSize
kv["cohere2.attention.head_count"] = p.NumAttentionHeads
kv["cohere2.attention.head_count_kv"] = p.NumKeyValueHeads
kv["cohere2.attention.key_length"] = p.HeadDim
kv["cohere2.attention.layer_norm_epsilon"] = p.LayerNormEPS
kv["cohere2.attention.sliding_window"] = p.SlidingWindow
kv["cohere2.attention.value_length"] = p.HeadDim
kv["cohere2.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
kv["cohere2.logit_scale"] = p.LogitScale
kv["cohere2.rope.dimension_count"] = uint32(p.RotaryPct * float32(p.HiddenSize/p.NumAttentionHeads))
kv["cohere2.rope.freq_base"] = p.RopeTheta
kv["cohere2.rope.scaling.type"] = "none"
kv["cohere2.vocab_size"] = p.VocabSize
return kv
}
func (p *cohere2Model) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *cohere2Model) Replacements() []string {
return []string{
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_norm", "attn_k_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"self_attn.k_proj", "attn_k",
"self_attn.o_proj", "attn_output",
"self_attn.q_proj", "attn_q",
"self_attn.v_proj", "attn_v",
"model.norm", "output_norm",
"model.embed_tokens", "token_embd",
}
}