ollama/sample/transforms.go
2025-03-12 11:59:17 -07:00

202 lines
4.4 KiB
Go

package sample
import (
"container/heap"
"math"
"slices"
)
// tokenHeap implements heap.Interface and holds tokens as a min-heap to track k largest elements
type tokenHeap []token
func (h tokenHeap) Len() int { return len(h) }
func (h tokenHeap) Less(i, j int) bool { return h[i].value < h[j].value } // Use < for min-heap to track largest elements
func (h tokenHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *tokenHeap) Push(x any) {
*h = append(*h, x.(token))
}
func (h *tokenHeap) Pop() any {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
// temperature applies scaling and softmax to the logits
func temperature(ts []token, temp float32) []token {
// Find max logit for numerical stability
maxLogit := float32(math.Inf(-1))
for _, t := range ts {
if t.value > maxLogit {
maxLogit = t.value
}
}
// Apply temperature and compute exp(x - max)
temp = max(temp, 1e-7)
var sum float32
for i, v := range ts {
ts[i].value = float32(math.Exp(float64((v.value - maxLogit) / temp)))
sum += ts[i].value
}
// Normalize
for i := range ts {
ts[i].value /= sum
}
return ts
}
// topK limits the number of tokens considered to the k highest logits
func topK(ts []token, k int) []token {
if k >= len(ts) {
sortLogits(ts)
return ts
}
// Initialize min-heap with first k elements
h := make(tokenHeap, k)
copy(h, ts[:k])
heap.Init(&h)
// Process remaining elements
for i := k; i < len(ts); i++ {
if ts[i].value > h[0].value {
heap.Pop(&h)
heap.Push(&h, ts[i])
}
}
// Convert heap to sorted slice in descending order
result := make([]token, k)
for i := k - 1; i >= 0; i-- {
result[i] = heap.Pop(&h).(token)
}
return result
}
// topP limits tokens to those with cumulative probability p
func topP(ts []token, p float32) []token {
if p == 1.0 {
return ts
}
// Find cutoff index where cumulative sum exceeds p
var sum float32
for i, t := range ts {
sum += t.value
if sum > float32(p) {
ts = ts[:i+1]
return ts
}
}
return ts
}
// minP limits tokens to those with cumulative probability p
func minP(ts []token, p float32) []token {
if p == 1.0 {
return ts
}
maxProb := float32(math.Inf(-1))
for _, token := range ts {
if token.value > maxProb {
maxProb = token.value
}
}
threshold := maxProb * float32(p)
// Filter tokens in-place
validTokens := ts[:0]
for i, token := range ts {
if token.value >= threshold {
validTokens = append(validTokens, ts[i])
}
}
ts = validTokens
return ts
}
// partialSortLogits uses quickselect to efficiently find and sort the top n tokens
func partialSortLogits(ts []token, n int) []token {
if n >= len(ts) {
n = len(ts)
}
left, right := 0, len(ts)-1
target := n - 1
// Quickselect algorithm to partition array around pivot
for left < right {
// Choose middle element as pivot and move it to the end
pivot := left + (right-left)/2
ts[pivot], ts[right] = ts[right], ts[pivot]
// storeIndex tracks where to put next element greater than pivot
storeIndex := left
pivotValue := ts[right].value
// Partition array into elements >= pivot and < pivot
// Elements >= pivot go to the left side
for i := left; i < right; i++ {
if ts[i].value >= pivotValue {
ts[storeIndex], ts[i] = ts[i], ts[storeIndex]
storeIndex++
}
}
// Move pivot to its final position
ts[right], ts[storeIndex] = ts[storeIndex], ts[right]
// If pivot is at target position, we're done
// Otherwise recursively partition the half containing target
if storeIndex == target {
break
} else if storeIndex < target {
left = storeIndex + 1 // Target is in right half
} else {
right = storeIndex - 1 // Target is in left half
}
}
// Sort just the top n elements in descending order
slices.SortFunc(ts[:n], func(a, b token) int {
if a.value > b.value {
return -1
}
if a.value < b.value {
return 1
}
return 0
})
return ts[:n]
}
// sortLogits uses partialSortLogits to efficiently sort tokens
// It sorts approximately sqrt(len(tokens)) elements which balances
// between having enough tokens for sampling while avoiding full sort
func sortLogits(ts []token) {
// Use sqrt of token length as a heuristic for partial sort size
// This provides a good balance between performance and having enough tokens
n := int(math.Sqrt(float64(len(ts)))) + 1
// Ensure we have at least 100 tokens and at most 1000
switch {
case n < 100:
n = 100
case n > 1000:
n = 1000
}
partialSortLogits(ts, n)
}