mirror of
https://github.com/ollama/ollama.git
synced 2025-05-10 18:06:33 +02:00
158 lines
4.6 KiB
Go
158 lines
4.6 KiB
Go
package gemma3
|
|
|
|
import (
|
|
"bytes"
|
|
"image"
|
|
"math"
|
|
"slices"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.SentencePieceModel
|
|
|
|
*VisionModel `gguf:"v,vision"`
|
|
*TextModel
|
|
|
|
*MultiModalProjector `gguf:"mm"`
|
|
|
|
ImageProcessor
|
|
}
|
|
|
|
var _ model.MultimodalProcessor = (*Model)(nil)
|
|
|
|
type MultiModalProjector struct {
|
|
SoftEmbNorm *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
|
|
InputProjection *nn.Linear `gguf:"mm_input_projection"`
|
|
|
|
tokensPerImage int
|
|
}
|
|
|
|
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, imageSize, patchSize int, eps float32) ml.Tensor {
|
|
l := visionOutputs.Dim(0)
|
|
|
|
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
|
patchesPerImage := imageSize / patchSize
|
|
visionOutputs = visionOutputs.Reshape(ctx, patchesPerImage, patchesPerImage, l)
|
|
|
|
kernelSize := patchesPerImage / int(math.Sqrt(float64(p.tokensPerImage)))
|
|
visionOutputs = visionOutputs.AvgPool2D(ctx, kernelSize, kernelSize, 0)
|
|
visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0)*visionOutputs.Dim(1), l)
|
|
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
|
visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)
|
|
|
|
// TODO: inputProjection must be transposed since they're incompatible with visionOutputs
|
|
visionOutputs = p.InputProjection.Weight.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mulmat(ctx, visionOutputs)
|
|
return visionOutputs
|
|
}
|
|
|
|
func New(c fs.Config) (model.Model, error) {
|
|
m := Model{
|
|
SentencePieceModel: model.NewSentencePieceModel(
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Scores: c.Floats("tokenizer.ggml.scores"),
|
|
Types: c.Uints("tokenizer.ggml.token_type"),
|
|
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
EOS: int32(1),
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
EOT: int32(106),
|
|
AddEOT: c.Bool("tokenizer.ggml.add_eot_token", false),
|
|
},
|
|
),
|
|
ImageProcessor: newImageProcessor(c),
|
|
VisionModel: newVisionModel(c),
|
|
TextModel: newTextModel(c),
|
|
MultiModalProjector: &MultiModalProjector{
|
|
tokensPerImage: int(c.Uint("mm_tokens_per_image", 256)),
|
|
},
|
|
}
|
|
|
|
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
|
|
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
|
|
|
|
return &m, nil
|
|
}
|
|
|
|
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
|
if len(m.VisionModel.Layers) == 0 {
|
|
return nil, model.ErrNoVisionModel
|
|
}
|
|
|
|
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
f32s, err := m.ImageProcessor.ProcessImage(image)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
|
|
m.ImageProcessor.imageSize,
|
|
m.ImageProcessor.imageSize,
|
|
m.ImageProcessor.numChannels,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
|
|
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
|
|
return visionOutputs, nil
|
|
}
|
|
|
|
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
|
var result []input.Input
|
|
|
|
for _, inp := range inputs {
|
|
if inp.Multimodal == nil {
|
|
result = append(result, inp)
|
|
} else {
|
|
inputMultimodal := inp.Multimodal.(ml.Tensor)
|
|
|
|
result = append(result,
|
|
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
|
|
input.Input{Token: 255999}, // "<start_of_image>""
|
|
input.Input{Multimodal: inputMultimodal, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
|
|
)
|
|
|
|
// add image token placeholders
|
|
result = append(result, slices.Repeat([]input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
|
|
|
|
result = append(result,
|
|
input.Input{Token: 256000}, // <end_of_image>
|
|
input.Input{Token: 108}, // "\n\n"
|
|
)
|
|
}
|
|
}
|
|
|
|
return result, nil
|
|
}
|
|
|
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("gemma3", New)
|
|
}
|