Get up and running with Llama 3.3, DeepSeek-R1, Phi-4, Gemma 3, Mistral Small 3.1 and other large language models. https://ollama.com
Find a file
2025-04-03 17:31:21 -07:00
.github .github/workflows: swap order of go test and golangci-lint (#9389) 2025-02-26 23:03:48 -08:00
api chore(all): replace instances of interface with any (#10067) 2025-04-02 09:44:27 -07:00
app docs: improve syntax highlighting in code blocks (#8854) 2025-02-07 09:55:07 -08:00
auth lint 2024-08-01 17:06:06 -07:00
benchmark chore(all): replace instances of interface with any (#10067) 2025-04-02 09:44:27 -07:00
cmd chore(all): replace instances of interface with any (#10067) 2025-04-02 09:44:27 -07:00
convert model: support for mistral-small in the ollama runner 2025-04-03 16:57:36 -07:00
discover chore(all): replace instances of interface with any (#10067) 2025-04-02 09:44:27 -07:00
docs api: return model capabilities from the show endpoint (#10066) 2025-04-01 15:21:46 -07:00
envconfig server: allow vscode-file origins (#9313) 2025-02-27 10:39:43 -08:00
format chore(all): replace instances of interface with any (#10067) 2025-04-02 09:44:27 -07:00
fs model: support for mistral-small in the ollama runner 2025-04-03 16:57:36 -07:00
integration chore(all): replace instances of interface with any (#10067) 2025-04-02 09:44:27 -07:00
kvcache model: support for mistral-small in the ollama runner 2025-04-03 16:57:36 -07:00
llama model: support for mistral-small in the ollama runner 2025-04-03 16:57:36 -07:00
llm llm: set done reason at server level (#9830) 2025-04-03 10:19:24 -07:00
macapp docs: improve syntax highlighting in code blocks (#8854) 2025-02-07 09:55:07 -08:00
ml model: support for mistral-small in the ollama runner 2025-04-03 16:57:36 -07:00
model model: support for mistral-small in the ollama runner 2025-04-03 16:57:36 -07:00
openai chore(all): replace instances of interface with any (#10067) 2025-04-02 09:44:27 -07:00
parser model: support for mistral-small in the ollama runner 2025-04-03 16:57:36 -07:00
progress address code review comments 2025-02-18 14:50:09 -08:00
readline cli: adding support ctrl-n/p like general cli (#9136) 2025-03-12 08:51:56 -07:00
runner llm: set done reason at server level (#9830) 2025-04-03 10:19:24 -07:00
sample sample: add error handling for empty logits (#9740) 2025-03-20 11:11:18 -07:00
scripts Align versions for local builds (#9635) 2025-03-14 15:44:08 -07:00
server rebase + fix tests 2025-04-03 17:31:21 -07:00
template templates: add autotemplate for gemma3 (#9880) 2025-03-20 00:15:30 -07:00
types api: return model capabilities from the show endpoint (#10066) 2025-04-01 15:21:46 -07:00
version add version 2023-08-22 09:40:58 -07:00
.dockerignore next build (#8539) 2025-01-29 15:03:38 -08:00
.gitattributes chore: update gitattributes (#8860) 2025-02-05 16:37:18 -08:00
.gitignore server/internal: copy bmizerany/ollama-go to internal package (#9294) 2025-02-24 22:39:44 -08:00
.golangci.yaml server/internal: copy bmizerany/ollama-go to internal package (#9294) 2025-02-24 22:39:44 -08:00
CMakeLists.txt Add gfx1200 & gfx1201 support on linux (#9878) 2025-03-27 07:35:19 -07:00
CMakePresets.json Add gfx1200 & gfx1201 support on linux (#9878) 2025-03-27 07:35:19 -07:00
CONTRIBUTING.md CONTRIBUTING: provide clarity on good commit messages, and bad (#9405) 2025-02-27 19:22:26 -08:00
Dockerfile docker: use go version from go.mod 2025-03-03 13:02:02 -08:00
go.mod sample: improve ollama engine sampler performance (#9374) 2025-03-07 12:37:48 -08:00
go.sum server/internal/registry: take over pulls from server package (#9485) 2025-03-05 14:48:18 -08:00
LICENSE proto -> ollama 2023-06-26 15:57:13 -04:00
main.go lint 2024-08-01 17:06:06 -07:00
Makefile.sync llama: update llama.cpp vendor code to commit d7cfe1ff (#9356) 2025-02-26 20:34:44 -08:00
README.md readme: add Casibase to community integrations (#10057) 2025-04-02 01:27:16 -07:00
SECURITY.md Create SECURITY.md 2024-07-30 21:01:12 -07:00

  ollama

Ollama

Get up and running with large language models.

macOS

Download

Windows

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Community

Quickstart

To run and chat with Llama 3.2:

ollama run llama3.2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Gemma 3 1B 815MB ollama run gemma3:1b
Gemma 3 4B 3.3GB ollama run gemma3
Gemma 3 12B 8.1GB ollama run gemma3:12b
Gemma 3 27B 17GB ollama run gemma3:27b
QwQ 32B 20GB ollama run qwq
DeepSeek-R1 7B 4.7GB ollama run deepseek-r1
DeepSeek-R1 671B 404GB ollama run deepseek-r1:671b
Llama 3.3 70B 43GB ollama run llama3.3
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.2 Vision 11B 7.9GB ollama run llama3.2-vision
Llama 3.2 Vision 90B 55GB ollama run llama3.2-vision:90b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 4 14B 9.1GB ollama run phi4
Phi 4 Mini 3.8B 2.5GB ollama run phi4-mini
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Granite-3.2 8B 4.9GB ollama run granite3.2

Note

You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.2 model:

ollama pull llama3.2

Create a Modelfile:

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.2

Copy a model

ollama cp llama3.2 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"

Output: The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

ollama run llama3.2 "Summarize this file: $(cat README.md)"

Output: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.2

List models on your computer

ollama list

List which models are currently loaded

ollama ps

Stop a model which is currently running

ollama stop llama3.2

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Cloud

Terminal

Apple Vision Pro

  • SwiftChat (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
  • Enchanted

Database

  • pgai - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
  • MindsDB (Connects Ollama models with nearly 200 data platforms and apps)
  • chromem-go with example
  • Kangaroo (AI-powered SQL client and admin tool for popular databases)

Package managers

Libraries

Mobile

  • SwiftChat (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS and iPad)
  • Enchanted
  • Maid
  • Ollama App (Modern and easy-to-use multi-platform client for Ollama)
  • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
  • Ollama Android Chat (No need for Termux, start the Ollama service with one click on an Android device)
  • Reins (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.

Observability

  • Opik is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
  • Lunary is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
  • OpenLIT is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
  • HoneyHive is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
  • Langfuse is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
  • MLflow Tracing is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.