mirror of
https://github.com/ollama/ollama.git
synced 2025-05-10 18:06:33 +02:00
Currently, the KV cache and graph are lazily allocated as needed. The cache is fully allocated on first use of the corresponding layer whereas the graph grows with the size of the context. This can be an issue if another application allocates more VRAM after we do our calculations - Ollama will crash in the middle of inference. If we instead allocate the maximum needed memory at startup of the runner, we will either succeed or fail at that point rather than at some surprising time in the future. Currently, this only generates a worst case batch for text, which means that vision models may get a partial allocation and continue to lazily allocate the rest.
316 lines
7.6 KiB
Go
316 lines
7.6 KiB
Go
package model
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
_ "image/jpeg"
|
|
_ "image/png"
|
|
"log/slog"
|
|
"os"
|
|
"reflect"
|
|
"strconv"
|
|
"strings"
|
|
|
|
_ "golang.org/x/image/bmp"
|
|
_ "golang.org/x/image/tiff"
|
|
_ "golang.org/x/image/webp"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
fsggml "github.com/ollama/ollama/fs/ggml"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
_ "github.com/ollama/ollama/ml/backend"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
var ErrNoVisionModel = errors.New("this model is missing data required for image input")
|
|
|
|
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
|
|
type Model interface {
|
|
Forward(ml.Context, input.Batch) (ml.Tensor, error)
|
|
|
|
Backend() ml.Backend
|
|
Config() config
|
|
}
|
|
|
|
// MultimodalProcessor must be implemented by multimodal models.
|
|
type MultimodalProcessor interface {
|
|
// EncodeMultimodal processes a single input (such as an image) and
|
|
// generates an output (typically an embedding) that can be used by the model.
|
|
//
|
|
// The return value is most typically an ml.Tensor, however, different
|
|
// type are possible, such as an object containing a tensor plus
|
|
// additional metadata, a slice of tensors or even just the original input.
|
|
//
|
|
// The result may be cached by the runner.
|
|
EncodeMultimodal(ml.Context, []byte) (any, error)
|
|
|
|
// PostTokenize is called after tokenization to allow the model to edit the
|
|
// input stream to correctly arrange multimodal elements.
|
|
//
|
|
// The input is a slice of tokens with the results of EncodeMultimodal interleaved
|
|
// in the order that the user provided them. Each element of the slice will be
|
|
// either a single token or single multimodal object.
|
|
//
|
|
// The model must ensure that inputs are stored according to how they will be
|
|
// processed and stored in the cache. For example, Llava-style models should insert
|
|
// placeholder tokens equal to the feature size of the corresponding image with
|
|
// the image itself attached to and split across these tokens. When Forward is called
|
|
// a partial subset of these tokens may be submitted according to the batch size.
|
|
//
|
|
// This function is also responsible for updating MultimodalHash for any Multimodal
|
|
// that is modified to ensure that there is a unique hash value that accurately
|
|
// represents the contents.
|
|
PostTokenize([]input.Input) ([]input.Input, error)
|
|
}
|
|
|
|
// Base implements the common fields and methods for all models
|
|
type Base struct {
|
|
b ml.Backend
|
|
config
|
|
}
|
|
|
|
type config struct {
|
|
Cache kvcache.Cache
|
|
}
|
|
|
|
// Backend returns the underlying backend that will run the model
|
|
func (m *Base) Backend() ml.Backend {
|
|
return m.b
|
|
}
|
|
|
|
func (m *Base) Config() config {
|
|
return m.config
|
|
}
|
|
|
|
var models = make(map[string]func(fs.Config) (Model, error))
|
|
|
|
// Register registers a model constructor for the given architecture
|
|
func Register(name string, f func(fs.Config) (Model, error)) {
|
|
if _, ok := models[name]; ok {
|
|
panic("model: model already registered")
|
|
}
|
|
|
|
models[name] = f
|
|
}
|
|
|
|
// New initializes a new model instance with the provided configuration based on the metadata in the model file
|
|
func New(ctx context.Context, modelPath string, params ml.BackendParams) (Model, error) {
|
|
r, err := os.Open(modelPath)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer r.Close()
|
|
|
|
b, err := ml.NewBackend(ctx, r, params)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
arch := b.Config().Architecture()
|
|
f, ok := models[arch]
|
|
if !ok {
|
|
return nil, fmt.Errorf("unsupported model architecture %q", arch)
|
|
}
|
|
|
|
m, err := f(b.Config())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
base := Base{b: b, config: m.Config()}
|
|
|
|
v := reflect.ValueOf(m)
|
|
v.Elem().Set(populateFields(base, v.Elem()))
|
|
return m, nil
|
|
}
|
|
|
|
func NewTextProcessor(s string) (TextProcessor, error) {
|
|
r, err := os.Open(s)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer r.Close()
|
|
meta, _, err := fsggml.Decode(r, -1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return getTextProcessor(meta.KV())
|
|
}
|
|
|
|
func getTextProcessor(kv fsggml.KV) (TextProcessor, error) {
|
|
arch := kv.Architecture()
|
|
f, ok := models[arch]
|
|
if !ok {
|
|
return nil, fmt.Errorf("unsupported model architecture %q", arch)
|
|
}
|
|
m, err := f(kv)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
tp, ok := m.(TextProcessor)
|
|
if !ok {
|
|
return nil, fmt.Errorf("%v is not a TextProcessor", m)
|
|
}
|
|
return tp, nil
|
|
}
|
|
|
|
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
|
|
t := v.Type()
|
|
|
|
if t.Kind() == reflect.Struct {
|
|
allNil := true
|
|
for i := range t.NumField() {
|
|
tt := t.Field(i).Type
|
|
vv := v.Field(i)
|
|
if !vv.CanSet() {
|
|
continue
|
|
}
|
|
|
|
// make a copy
|
|
tagsCopy := tags
|
|
if tag := t.Field(i).Tag.Get("gguf"); tag != "" {
|
|
tagsCopy = append(tagsCopy, ParseTags(tag))
|
|
}
|
|
|
|
if tt == reflect.TypeOf((*Base)(nil)).Elem() {
|
|
vv.Set(reflect.ValueOf(base))
|
|
} else if tt == reflect.TypeOf((*ml.Tensor)(nil)).Elem() {
|
|
var fn func([]Tag) [][]string
|
|
fn = func(tags []Tag) (values [][]string) {
|
|
if len(tags) < 1 {
|
|
return nil
|
|
}
|
|
|
|
values = [][]string{{tags[0].Name}}
|
|
for _, alt := range tags[0].Alternate {
|
|
values = append(values, []string{alt})
|
|
}
|
|
|
|
for i, value := range values {
|
|
for _, rest := range fn(tags[1:]) {
|
|
value = append(value, rest...)
|
|
}
|
|
|
|
values[i] = value
|
|
}
|
|
|
|
return values
|
|
}
|
|
|
|
names := fn(tagsCopy)
|
|
for _, name := range names {
|
|
if tensor := base.Backend().Get(strings.Join(name, ".")); tensor != nil {
|
|
slog.Debug("found tensor", "", tensor)
|
|
vv.Set(reflect.ValueOf(tensor))
|
|
break
|
|
}
|
|
}
|
|
} else if tt.Kind() == reflect.Pointer || tt.Kind() == reflect.Interface {
|
|
setPointer(base, vv, tagsCopy)
|
|
} else if tt.Kind() == reflect.Slice || tt.Kind() == reflect.Array {
|
|
for i := range vv.Len() {
|
|
vvv := vv.Index(i)
|
|
if vvv.Kind() == reflect.Pointer || vvv.Kind() == reflect.Interface {
|
|
setPointer(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)}))
|
|
} else {
|
|
vvv.Set(populateFields(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)})...))
|
|
}
|
|
}
|
|
}
|
|
|
|
if !canNil(tt) || !vv.IsNil() {
|
|
allNil = false
|
|
}
|
|
}
|
|
|
|
if allNil {
|
|
return reflect.Zero(t)
|
|
}
|
|
}
|
|
|
|
return v
|
|
}
|
|
|
|
func setPointer(base Base, v reflect.Value, tags []Tag) {
|
|
vv := v
|
|
if v.Kind() == reflect.Interface {
|
|
if v.IsNil() {
|
|
return
|
|
}
|
|
|
|
vv = vv.Elem()
|
|
}
|
|
|
|
vv = vv.Elem()
|
|
if v.IsNil() {
|
|
vv = reflect.New(v.Type().Elem()).Elem()
|
|
}
|
|
|
|
if f := populateFields(base, vv, tags...); f.CanAddr() {
|
|
v.Set(f.Addr())
|
|
}
|
|
}
|
|
|
|
type Tag struct {
|
|
Name string
|
|
Alternate []string
|
|
}
|
|
|
|
func ParseTags(s string) (tag Tag) {
|
|
parts := strings.Split(s, ",")
|
|
if len(parts) > 0 {
|
|
tag.Name = parts[0]
|
|
|
|
for _, part := range parts[1:] {
|
|
if value, ok := strings.CutPrefix(part, "alt:"); ok {
|
|
tag.Alternate = append(tag.Alternate, value)
|
|
}
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func canNil(t reflect.Type) bool {
|
|
return t.Kind() == reflect.Chan ||
|
|
t.Kind() == reflect.Func ||
|
|
t.Kind() == reflect.Interface ||
|
|
t.Kind() == reflect.Map ||
|
|
t.Kind() == reflect.Pointer ||
|
|
t.Kind() == reflect.Slice
|
|
}
|
|
|
|
func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Tensor, error) {
|
|
if len(batch.Positions) != len(batch.Sequences) {
|
|
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(batch.Positions), len(batch.Sequences))
|
|
}
|
|
|
|
if len(batch.Positions) < 1 {
|
|
return nil, errors.New("batch size cannot be less than 1")
|
|
}
|
|
|
|
var err error
|
|
batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
cache := m.Config().Cache
|
|
if cache != nil {
|
|
err := cache.StartForward(ctx, batch, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
t, err := m.Forward(ctx, batch)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
ctx.Forward(t).Compute(t)
|
|
|
|
return t, nil
|
|
}
|