mirror of
https://github.com/ollama/ollama.git
synced 2025-05-10 18:06:33 +02:00
418 lines
18 KiB
Diff
418 lines
18 KiB
Diff
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
|
From: jmorganca <jmorganca@gmail.com>
|
|
Date: Sun, 20 Apr 2025 16:11:09 -0700
|
|
Subject: [PATCH] solar-pro
|
|
|
|
adds support for the Solar Pro architecture
|
|
---
|
|
src/llama-arch.cpp | 21 ++++
|
|
src/llama-arch.h | 3 +
|
|
src/llama-hparams.cpp | 8 ++
|
|
src/llama-hparams.h | 5 +
|
|
src/llama-model-loader.cpp | 1 +
|
|
src/llama-model.cpp | 207 +++++++++++++++++++++++++++++++++++++
|
|
src/llama-model.h | 3 +
|
|
7 files changed, 248 insertions(+)
|
|
|
|
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
|
|
index f2bc8ca7..5ab3f572 100644
|
|
--- a/src/llama-arch.cpp
|
|
+++ b/src/llama-arch.cpp
|
|
@@ -69,6 +69,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
{ LLM_ARCH_GRANITE, "granite" },
|
|
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
|
|
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
|
+ { LLM_ARCH_SOLAR, "solar" },
|
|
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
|
|
{ LLM_ARCH_PLM, "plm" },
|
|
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
|
|
@@ -142,6 +143,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
|
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
|
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
|
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
|
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
|
|
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
|
|
|
|
@@ -1502,6 +1504,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
|
},
|
|
},
|
|
+ {
|
|
+ LLM_ARCH_SOLAR,
|
|
+ {
|
|
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
+ { LLM_TENSOR_OUTPUT, "output" },
|
|
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
|
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
|
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
|
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
|
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
|
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
|
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
|
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
+ { LLM_TENSOR_BSKCN_TV, "bskcn_tv" },
|
|
+ },
|
|
+ },
|
|
{
|
|
LLM_ARCH_WAVTOKENIZER_DEC,
|
|
{
|
|
@@ -1680,6 +1700,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
|
{LLM_TENSOR_FFN_EXP_PROBS_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
|
|
// this tensor is loaded for T5, but never used
|
|
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
|
|
+ {LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
|
{LLM_TENSOR_CONV1D, {LLM_TENSOR_LAYER_INPUT, GGML_OP_IM2COL}},
|
|
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
|
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
|
diff --git a/src/llama-arch.h b/src/llama-arch.h
|
|
index 41a023da..525c1b7d 100644
|
|
--- a/src/llama-arch.h
|
|
+++ b/src/llama-arch.h
|
|
@@ -73,6 +73,7 @@ enum llm_arch {
|
|
LLM_ARCH_GRANITE,
|
|
LLM_ARCH_GRANITE_MOE,
|
|
LLM_ARCH_CHAMELEON,
|
|
+ LLM_ARCH_SOLAR,
|
|
LLM_ARCH_WAVTOKENIZER_DEC,
|
|
LLM_ARCH_PLM,
|
|
LLM_ARCH_BAILINGMOE,
|
|
@@ -146,6 +147,7 @@ enum llm_kv {
|
|
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
|
|
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
|
LLM_KV_ATTENTION_SCALE,
|
|
+ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
|
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
|
|
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
|
|
|
|
@@ -346,6 +348,7 @@ enum llm_tensor {
|
|
LLM_TENSOR_ENC_OUTPUT_NORM,
|
|
LLM_TENSOR_CLS,
|
|
LLM_TENSOR_CLS_OUT,
|
|
+ LLM_TENSOR_BSKCN_TV,
|
|
LLM_TENSOR_CONV1D,
|
|
LLM_TENSOR_CONVNEXT_DW,
|
|
LLM_TENSOR_CONVNEXT_NORM,
|
|
diff --git a/src/llama-hparams.cpp b/src/llama-hparams.cpp
|
|
index 90dfe7a7..8a667960 100644
|
|
--- a/src/llama-hparams.cpp
|
|
+++ b/src/llama-hparams.cpp
|
|
@@ -70,6 +70,14 @@ uint32_t llama_hparams::n_embd_v_s() const {
|
|
return ssm_d_state * ssm_d_inner;
|
|
}
|
|
|
|
+bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {
|
|
+ if (il < n_layer) {
|
|
+ return n_bskcn_arr[n][il] > 0;
|
|
+ }
|
|
+
|
|
+ GGML_ABORT("fatal error");
|
|
+}
|
|
+
|
|
bool llama_hparams::is_swa(uint32_t il) const {
|
|
if (il < n_layer) {
|
|
return n_swa > 0 && n_swa_pattern > 0 && il % n_swa_pattern < (n_swa_pattern - 1);
|
|
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
|
|
index 7ee6a5b7..48dce407 100644
|
|
--- a/src/llama-hparams.h
|
|
+++ b/src/llama-hparams.h
|
|
@@ -55,6 +55,8 @@ struct llama_hparams {
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
|
|
|
+ std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
|
|
+
|
|
uint32_t n_layer_dense_lead = 0;
|
|
uint32_t n_lora_q = 0;
|
|
uint32_t n_lora_kv = 0;
|
|
@@ -154,6 +156,9 @@ struct llama_hparams {
|
|
// dimension of the recurrent state embeddings
|
|
uint32_t n_embd_v_s() const;
|
|
|
|
+ // Block skip connection
|
|
+ bool n_bskcn(uint32_t n, uint32_t il) const;
|
|
+
|
|
bool is_swa(uint32_t il) const;
|
|
};
|
|
|
|
diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp
|
|
index ea73a8a7..a012aeae 100644
|
|
--- a/src/llama-model-loader.cpp
|
|
+++ b/src/llama-model-loader.cpp
|
|
@@ -439,6 +439,7 @@ namespace GGUFMeta {
|
|
// TODO: this is not very clever - figure out something better
|
|
template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required);
|
|
template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
|
|
+ template bool llama_model_loader::get_key_or_arr<uint32_t>(const std::string & key, std::array<uint32_t, 512> & result, uint32_t n, bool required);
|
|
|
|
llama_model_loader::llama_model_loader(
|
|
const std::string & fname,
|
|
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
|
index 822e2bb2..572378c9 100644
|
|
--- a/src/llama-model.cpp
|
|
+++ b/src/llama-model.cpp
|
|
@@ -1386,6 +1386,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
default: type = LLM_TYPE_UNKNOWN;
|
|
}
|
|
} break;
|
|
+ case LLM_ARCH_SOLAR:
|
|
+ {
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
+ for (size_t i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
|
|
+ auto & bskcn = hparams.n_bskcn_arr[i];
|
|
+ bskcn.fill(0);
|
|
+ auto kv = LLM_KV(arch);
|
|
+ ml.get_key_or_arr(format((kv(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION) + ".%d").c_str(), i), bskcn, hparams.n_layer, false);
|
|
+ }
|
|
+
|
|
+ switch (hparams.n_layer) {
|
|
+ case 64: type = LLM_TYPE_22B; break;
|
|
+ default: type = LLM_TYPE_UNKNOWN;
|
|
+ }
|
|
+ } break;
|
|
case LLM_ARCH_WAVTOKENIZER_DEC:
|
|
{
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
|
@@ -3741,6 +3756,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
|
|
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
|
|
|
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
|
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
|
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
|
+ }
|
|
+ } break;
|
|
+ case LLM_ARCH_SOLAR:
|
|
+ {
|
|
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
|
+
|
|
+ // output
|
|
+ {
|
|
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
|
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
+ }
|
|
+
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
+ auto & layer = layers[i];
|
|
+
|
|
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
|
+
|
|
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
|
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
|
|
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
|
|
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
|
|
+
|
|
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
|
+
|
|
+ layer.bskcn_tv = create_tensor(tn(LLM_TENSOR_BSKCN_TV, "weight", i), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
|
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
|
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
|
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
|
@@ -12342,6 +12385,165 @@ struct llm_build_chameleon : public llm_graph_context {
|
|
}
|
|
};
|
|
|
|
+struct llm_build_solar : public llm_graph_context {
|
|
+ llm_build_solar(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
+
|
|
+ struct ggml_tensor * cur;
|
|
+ struct ggml_tensor * inpL;
|
|
+
|
|
+ inpL = build_inp_embd(model.tok_embd);
|
|
+
|
|
+ // inp_pos - contains the positions
|
|
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
|
+
|
|
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
+ auto * inp_attn = build_attn_inp_kv_unified();
|
|
+
|
|
+ const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
|
+
|
|
+ struct ggml_tensor * bskcn_1;
|
|
+ struct ggml_tensor * bskcn_2;
|
|
+
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
+ struct ggml_tensor * inpSA = inpL;
|
|
+
|
|
+ if (hparams.n_bskcn(0, il)) {
|
|
+ bskcn_1 = inpSA;
|
|
+ }
|
|
+
|
|
+ if (hparams.n_bskcn(1, il)) {
|
|
+ bskcn_2 = inpSA;
|
|
+ }
|
|
+
|
|
+ if (hparams.n_bskcn(2, il)) {
|
|
+ inpSA = ggml_add(
|
|
+ ctx0,
|
|
+ ggml_mul(ctx0, bskcn_1, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
|
|
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
|
|
+ }
|
|
+
|
|
+ if (hparams.n_bskcn(3, il)) {
|
|
+ inpSA = ggml_add(
|
|
+ ctx0,
|
|
+ ggml_mul(ctx0, bskcn_2, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
|
|
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
|
|
+ }
|
|
+
|
|
+ // norm
|
|
+ cur = build_norm(inpL,
|
|
+ model.layers[il].attn_norm, NULL,
|
|
+ LLM_NORM_RMS, il);
|
|
+ cb(cur, "attn_norm", il);
|
|
+
|
|
+ // self-attention
|
|
+ {
|
|
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
|
|
+ ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
|
|
+
|
|
+ // compute Q and K and RoPE them
|
|
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
+ cb(Qcur, "Qcur", il);
|
|
+ if (model.layers[il].bq) {
|
|
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
+ cb(Qcur, "Qcur", il);
|
|
+ }
|
|
+
|
|
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+ if (model.layers[il].bk) {
|
|
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+ }
|
|
+
|
|
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+ if (model.layers[il].bv) {
|
|
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+ }
|
|
+
|
|
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
+
|
|
+ Qcur = ggml_rope_ext(
|
|
+ ctx0, Qcur, inp_pos, rope_factors,
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
+ );
|
|
+
|
|
+ Kcur = ggml_rope_ext(
|
|
+ ctx0, Kcur, inp_pos, rope_factors,
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
+ );
|
|
+
|
|
+ cb(Qcur, "Qcur", il);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+
|
|
+ cur = build_attn(inp_attn, gf,
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
+ Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
|
|
+ cb(cur, "attn_out", il);
|
|
+ }
|
|
+
|
|
+ if (il == n_layer - 1) {
|
|
+ // skip computing output for unused tokens
|
|
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
+ }
|
|
+
|
|
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
+
|
|
+ // feed-forward network
|
|
+ cur = build_norm(ffn_inp,
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
+ LLM_NORM_RMS, il);
|
|
+ cb(cur, "ffn_norm", il);
|
|
+
|
|
+ cur = build_ffn(cur,
|
|
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
|
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
|
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
|
+ NULL,
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
+ cb(cur, "ffn_out", il);
|
|
+
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
+ cb(cur, "ffn_out", il);
|
|
+
|
|
+ cur = build_cvec(cur, il);
|
|
+ cb(cur, "l_out", il);
|
|
+
|
|
+ // input for next layer
|
|
+ inpL = cur;
|
|
+ }
|
|
+
|
|
+ cur = inpL;
|
|
+
|
|
+ cur = build_norm(cur,
|
|
+ model.output_norm, NULL,
|
|
+ LLM_NORM_RMS, -1);
|
|
+
|
|
+ cb(cur, "result_norm", -1);
|
|
+ res->t_embd = cur;
|
|
+
|
|
+ // lm_head
|
|
+ cur = build_lora_mm(model.output, cur);
|
|
+
|
|
+ cb(cur, "result_output", -1);
|
|
+ res->t_logits = cur;
|
|
+
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
+ }
|
|
+};
|
|
+
|
|
struct llm_build_wavtokenizer_dec : public llm_graph_context {
|
|
llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
|
ggml_tensor * cur;
|
|
@@ -13092,6 +13294,10 @@ llm_graph_result_ptr llama_model::build_graph(
|
|
{
|
|
llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
|
|
} break;
|
|
+ case LLM_ARCH_SOLAR:
|
|
+ {
|
|
+ llm = std::make_unique<llm_build_solar>(*this, params, gf);
|
|
+ } break;
|
|
case LLM_ARCH_WAVTOKENIZER_DEC:
|
|
{
|
|
llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
|
|
@@ -13238,6 +13444,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
case LLM_ARCH_GRANITE:
|
|
case LLM_ARCH_GRANITE_MOE:
|
|
case LLM_ARCH_CHAMELEON:
|
|
+ case LLM_ARCH_SOLAR:
|
|
case LLM_ARCH_BAILINGMOE:
|
|
return LLAMA_ROPE_TYPE_NORM;
|
|
|
|
diff --git a/src/llama-model.h b/src/llama-model.h
|
|
index 95eca002..856e6042 100644
|
|
--- a/src/llama-model.h
|
|
+++ b/src/llama-model.h
|
|
@@ -64,6 +64,7 @@ enum llm_type {
|
|
LLM_TYPE_15B,
|
|
LLM_TYPE_16B,
|
|
LLM_TYPE_20B,
|
|
+ LLM_TYPE_22B,
|
|
LLM_TYPE_27B,
|
|
LLM_TYPE_30B,
|
|
LLM_TYPE_32B,
|
|
@@ -311,6 +312,8 @@ struct llama_layer {
|
|
struct ggml_tensor * ffn_up_scale = nullptr;
|
|
struct ggml_tensor * ffn_down_scale = nullptr;
|
|
|
|
+ struct ggml_tensor * bskcn_tv = nullptr;
|
|
+
|
|
struct llama_layer_posnet posnet;
|
|
|
|
struct llama_layer_convnext convnext;
|