ollama/llama/patches/0006-add-mllama-support.patch
2025-05-01 18:24:09 -07:00

1010 lines
44 KiB
Diff

From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Sun, 20 Apr 2025 16:12:36 -0700
Subject: [PATCH] add mllama support
adds support for the llama 3.2 vision architecture
---
examples/llava/llava.cpp | 5 +-
examples/llava/mtmd.cpp | 6 +-
ggml/src/ggml-backend-reg.cpp | 6 +-
include/llama.h | 6 +
src/llama-arch.cpp | 44 +++++
src/llama-arch.h | 10 ++
src/llama-batch.cpp | 3 +
src/llama-context.cpp | 25 ++-
src/llama-context.h | 1 +
src/llama-cparams.h | 1 +
src/llama-graph.cpp | 25 +++
src/llama-graph.h | 12 ++
src/llama-hparams.cpp | 4 +
src/llama-hparams.h | 7 +
src/llama-kv-cache.cpp | 12 +-
src/llama-model-loader.cpp | 2 +
src/llama-model.cpp | 309 +++++++++++++++++++++++++++++++++-
src/llama-model.h | 12 ++
src/llama-quant.cpp | 4 +-
19 files changed, 473 insertions(+), 21 deletions(-)
diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp
index c00d16ae..bab027b5 100644
--- a/examples/llava/llava.cpp
+++ b/examples/llava/llava.cpp
@@ -457,7 +457,7 @@ struct llava_embd_batch {
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
- llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
+ llava_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
@@ -469,6 +469,7 @@ struct llava_embd_batch {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
+ /*n_embd =*/ n_embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
@@ -492,7 +493,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
n_eval = n_batch;
}
float * embd = image_embed->embed+i*n_embd;
- llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
+ llava_embd_batch llava_batch = llava_embd_batch(embd, n_embd, n_eval, *n_past, 0);
if (llama_decode(ctx_llama, llava_batch.batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;
diff --git a/examples/llava/mtmd.cpp b/examples/llava/mtmd.cpp
index 7081fd73..c14ac501 100644
--- a/examples/llava/mtmd.cpp
+++ b/examples/llava/mtmd.cpp
@@ -476,7 +476,7 @@ struct decode_embd_batch {
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
- decode_embd_batch(float * embd, int32_t n_tokens, int n_pos_per_embd, int n_mmproj_embd) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) {
+ decode_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) {
pos .resize(n_tokens * n_pos_per_embd);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
@@ -487,6 +487,7 @@ struct decode_embd_batch {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
+ /*n_embd =*/ n_embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
@@ -610,7 +611,8 @@ int32_t mtmd_helper_eval(mtmd_context * ctx,
int32_t i_batch = 0;
int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
float * embd = mtmd_get_output_embd(ctx);
- decode_embd_batch batch_embd(embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
+ int n_embd = llama_model_n_embd(llama_get_model(lctx));
+ decode_embd_batch batch_embd(embd, n_embd, n_tokens, n_past, 0);
const int nx = mtmd_image_tokens_get_nx(chunk.tokens_image.get());
const int ny = mtmd_image_tokens_get_ny(chunk.tokens_image.get());
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 405d8e31..82ae1b5b 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -178,9 +178,9 @@ struct ggml_backend_registry {
#ifdef GGML_USE_CANN
register_backend(ggml_backend_cann_reg());
#endif
-#ifdef GGML_USE_BLAS
- register_backend(ggml_backend_blas_reg());
-#endif
+// #ifdef GGML_USE_BLAS
+// register_backend(ggml_backend_blas_reg());
+// #endif
#ifdef GGML_USE_RPC
register_backend(ggml_backend_rpc_reg());
#endif
diff --git a/include/llama.h b/include/llama.h
index 06c56395..f1628e88 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -256,6 +256,7 @@ extern "C" {
llama_token * token;
float * embd;
+ int32_t n_embd;
llama_pos * pos;
int32_t * n_seq_id;
llama_seq_id ** seq_id;
@@ -358,6 +359,7 @@ extern "C" {
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
bool no_perf; // whether to measure performance timings
+ bool cross_attn; // whether to use cross attention
// Abort callback
// if it returns true, execution of llama_decode() will be aborted
@@ -459,6 +461,10 @@ extern "C" {
struct llama_context_params params),
"use llama_init_from_model instead");
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
+ // and not set on the context for all batches.
+ LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
+
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index 5ab3f572..eb7b5325 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -6,6 +6,7 @@
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_LLAMA, "llama" },
+ { LLM_ARCH_MLLAMA, "mllama" },
{ LLM_ARCH_LLAMA4, "llama4" },
{ LLM_ARCH_DECI, "deci" },
{ LLM_ARCH_FALCON, "falcon" },
@@ -144,6 +145,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
+ { LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
@@ -273,6 +275,40 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
+ {
+ LLM_ARCH_MLLAMA,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
+ { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
+ { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ { LLM_TENSOR_CROSS_ATTN_K_NORM, "blk.%d.cross_attn_k_norm" },
+ { LLM_TENSOR_CROSS_ATTN_K_PROJ, "blk.%d.cross_attn_k_proj" },
+ { LLM_TENSOR_CROSS_ATTN_O_PROJ, "blk.%d.cross_attn_o_proj" },
+ { LLM_TENSOR_CROSS_ATTN_Q_NORM, "blk.%d.cross_attn_q_norm" },
+ { LLM_TENSOR_CROSS_ATTN_Q_PROJ, "blk.%d.cross_attn_q_proj" },
+ { LLM_TENSOR_CROSS_ATTN_V_PROJ, "blk.%d.cross_attn_v_proj" },
+ { LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
+ { LLM_TENSOR_CROSS_ATTN_MLP_GATE, "blk.%d.cross_attn_mlp_gate" },
+ },
+ },
{
LLM_ARCH_DECI,
{
@@ -1701,6 +1737,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
// this tensor is loaded for T5, but never used
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
{LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
+ {LLM_TENSOR_CROSS_ATTN_K_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
+ {LLM_TENSOR_CROSS_ATTN_K_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
+ {LLM_TENSOR_CROSS_ATTN_O_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
+ {LLM_TENSOR_CROSS_ATTN_Q_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
+ {LLM_TENSOR_CROSS_ATTN_Q_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
+ {LLM_TENSOR_CROSS_ATTN_V_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
+ {LLM_TENSOR_CROSS_ATTN_ATTN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
+ {LLM_TENSOR_CROSS_ATTN_MLP_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CONV1D, {LLM_TENSOR_LAYER_INPUT, GGML_OP_IM2COL}},
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
diff --git a/src/llama-arch.h b/src/llama-arch.h
index 525c1b7d..bc8a4f0b 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -11,6 +11,7 @@
enum llm_arch {
LLM_ARCH_LLAMA,
LLM_ARCH_LLAMA4,
+ LLM_ARCH_MLLAMA,
LLM_ARCH_DECI,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
@@ -148,6 +149,7 @@ enum llm_kv {
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
+ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
@@ -349,6 +351,14 @@ enum llm_tensor {
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
LLM_TENSOR_BSKCN_TV,
+ LLM_TENSOR_CROSS_ATTN_K_NORM,
+ LLM_TENSOR_CROSS_ATTN_K_PROJ,
+ LLM_TENSOR_CROSS_ATTN_O_PROJ,
+ LLM_TENSOR_CROSS_ATTN_Q_NORM,
+ LLM_TENSOR_CROSS_ATTN_Q_PROJ,
+ LLM_TENSOR_CROSS_ATTN_V_PROJ,
+ LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
+ LLM_TENSOR_CROSS_ATTN_MLP_GATE,
LLM_TENSOR_CONV1D,
LLM_TENSOR_CONVNEXT_DW,
LLM_TENSOR_CONVNEXT_NORM,
diff --git a/src/llama-batch.cpp b/src/llama-batch.cpp
index 01d5ca57..8682b0e6 100644
--- a/src/llama-batch.cpp
+++ b/src/llama-batch.cpp
@@ -316,6 +316,7 @@ struct llama_batch llama_batch_get_one(
/*n_tokens =*/ n_tokens,
/*tokens =*/ tokens,
/*embd =*/ nullptr,
+ /*n_embd =*/ 0,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
@@ -328,6 +329,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
/*n_tokens =*/ 0,
/*tokens =*/ nullptr,
/*embd =*/ nullptr,
+ /*n_embd =*/ 0,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
@@ -336,6 +338,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
if (embd) {
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
+ batch.n_embd = embd;
} else {
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
}
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index 9c1fe93f..cd06ad91 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -851,7 +851,7 @@ float * llama_context::get_logits_ith(int32_t i) {
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs));
}
- return logits + j*model.vocab.n_tokens();
+ return logits + j*model.hparams.n_vocab;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
@@ -972,6 +972,10 @@ void llama_context::set_warmup(bool value) {
cparams.warmup = value;
}
+void llama_context::set_cross_attn(bool value) {
+ cparams.cross_attn = value;
+}
+
void llama_context::set_adapter_lora(
llama_adapter_lora * adapter,
float scale) {
@@ -1047,7 +1051,7 @@ int llama_context::encode(llama_batch & inp_batch) {
const int64_t n_embd = hparams.n_embd;
- sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
+ sbatch.from_batch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
@@ -1187,10 +1191,9 @@ int llama_context::decode(llama_batch & inp_batch) {
const llama_batch & batch = batch_allocr.batch;
- const auto & vocab = model.vocab;
const auto & hparams = model.hparams;
- const int32_t n_vocab = vocab.n_tokens();
+ const int32_t n_vocab = hparams.n_vocab;
const int64_t n_tokens_all = batch.n_tokens;
const int64_t n_embd = hparams.n_embd;
@@ -1238,7 +1241,7 @@ int llama_context::decode(llama_batch & inp_batch) {
const bool logits_all = n_outputs_all == n_tokens_all;
- sbatch.from_batch(batch, n_embd,
+ sbatch.from_batch(batch, batch.n_embd,
/* simple_split */ !kv_self->recurrent,
/* logits_all */ logits_all);
@@ -1472,12 +1475,11 @@ int llama_context::decode(llama_batch & inp_batch) {
int32_t llama_context::output_reserve(int32_t n_outputs) {
const auto & hparams = model.hparams;
- const auto & vocab = model.vocab;
const int64_t n_outputs_max = std::max<int64_t>(n_outputs, n_seq_max());
const auto n_batch = cparams.n_batch;
- const auto n_vocab = vocab.n_tokens();
+ const auto n_vocab = hparams.n_vocab;
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead
@@ -1545,7 +1547,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
void llama_context::output_reorder() {
auto & out_ids = sbatch.out_ids;
if (!out_ids.empty()) {
- const uint32_t n_vocab = model.vocab.n_tokens();
+ const uint32_t n_vocab = model.hparams.n_vocab;
const uint32_t n_embd = model.hparams.n_embd;
GGML_ASSERT((size_t) n_outputs == out_ids.size());
@@ -2052,7 +2054,7 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
{
LLAMA_LOG_DEBUG("%s: - writing logits\n", __func__);
- const uint64_t logits_size = std::min((uint64_t) this->logits_size, (uint64_t) n_outputs * model.vocab.n_tokens());
+ const uint64_t logits_size = std::min((uint64_t) this->logits_size, (uint64_t) n_outputs * model.hparams.n_vocab);
io.write(&logits_size, sizeof(logits_size));
@@ -2235,6 +2237,7 @@ llama_context_params llama_context_default_params() {
/*.offload_kqv =*/ true,
/*.flash_attn =*/ false,
/*.no_perf =*/ true,
+ /*.cross_attn =*/ false,
/*.abort_callback =*/ nullptr,
/*.abort_callback_data =*/ nullptr,
};
@@ -2362,6 +2365,10 @@ void llama_set_warmup(llama_context * ctx, bool warmup) {
ctx->set_warmup(warmup);
}
+void llama_set_cross_attention(struct llama_context * ctx, bool cross_attention) {
+ ctx->set_cross_attn(cross_attention);
+}
+
void llama_synchronize(llama_context * ctx) {
ctx->synchronize();
}
diff --git a/src/llama-context.h b/src/llama-context.h
index 5457f077..a50c4afa 100644
--- a/src/llama-context.h
+++ b/src/llama-context.h
@@ -65,6 +65,7 @@ struct llama_context {
void set_embeddings (bool value);
void set_causal_attn(bool value);
void set_warmup(bool value);
+ void set_cross_attn(bool value);
void set_adapter_lora(
llama_adapter_lora * adapter,
diff --git a/src/llama-cparams.h b/src/llama-cparams.h
index 30e550f0..85ad91b9 100644
--- a/src/llama-cparams.h
+++ b/src/llama-cparams.h
@@ -29,6 +29,7 @@ struct llama_cparams {
bool offload_kqv;
bool flash_attn;
bool no_perf;
+ bool cross_attn;
bool warmup;
enum llama_pooling_type pooling_type;
diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp
index fabb9ca2..b67216a4 100644
--- a/src/llama-graph.cpp
+++ b/src/llama-graph.cpp
@@ -560,6 +560,12 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
}
}
+void llm_graph_input_cross_attn_state::set_input(const llama_ubatch * ubatch) {
+ if (ubatch->embd) {
+ ggml_backend_tensor_set(cross_attn_state, ubatch->embd, 0, ggml_nbytes(cross_attn_state));
+ }
+}
+
//
// llm_graph_context
//
@@ -1532,6 +1538,25 @@ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
}
+ggml_tensor * llm_graph_context::build_inp_cross_attn_state() const {
+ const int64_t n_embd = hparams.n_embd;
+
+ auto inp = std::make_unique<llm_graph_input_cross_attn_state>();
+
+ ggml_tensor * cur = nullptr;
+
+ inp->cross_attn_state = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd, 1601, 4);
+ ggml_set_input(inp->cross_attn_state);
+
+ cur = inp->cross_attn_state;
+
+ cb(cur, "inp_cross_attn_state", -1);
+
+ res->add_input(std::move(inp));
+
+ return cur;
+}
+
ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_attn_cross * inp,
ggml_cgraph * gf,
diff --git a/src/llama-graph.h b/src/llama-graph.h
index d0c8d321..0fe18150 100644
--- a/src/llama-graph.h
+++ b/src/llama-graph.h
@@ -86,6 +86,7 @@ public:
ggml_tensor * tokens = nullptr; // I32 [n_batch]
ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch]
+ ggml_tensor * cross_attn_state; // F32 [4, n_embd, 1061]
};
class llm_graph_input_pos : public llm_graph_input_i {
@@ -283,6 +284,16 @@ public:
const llama_cross * cross = nullptr;
};
+class llm_graph_input_cross_attn_state : public llm_graph_input_i {
+public:
+ llm_graph_input_cross_attn_state() = default;
+ virtual ~llm_graph_input_cross_attn_state() = default;
+
+ void set_input(const llama_ubatch * ubatch) override;
+
+ ggml_tensor * cross_attn_state; // F32 [4, n_embd, 1061]
+};
+
//
// llm_graph_result
//
@@ -491,6 +502,7 @@ struct llm_graph_context {
ggml_tensor * build_inp_cls() const;
ggml_tensor * build_inp_s_copy() const;
ggml_tensor * build_inp_s_mask() const;
+ ggml_tensor * build_inp_cross_attn_state() const;
ggml_tensor * build_inp_cross_embd() const;
ggml_tensor * build_inp_pos_bucket_enc() const;
diff --git a/src/llama-hparams.cpp b/src/llama-hparams.cpp
index 8a667960..6a02de03 100644
--- a/src/llama-hparams.cpp
+++ b/src/llama-hparams.cpp
@@ -85,3 +85,7 @@ bool llama_hparams::is_swa(uint32_t il) const {
GGML_ABORT("fatal error");
}
+
+bool llama_hparams::cross_attention_layers(uint32_t il) const {
+ return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
+}
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
index 48dce407..b6fc7e6d 100644
--- a/src/llama-hparams.h
+++ b/src/llama-hparams.h
@@ -2,6 +2,8 @@
#include "llama.h"
+#include <algorithm>
+
#include <array>
// bump if necessary
@@ -42,6 +44,7 @@ struct llama_hparams {
uint32_t n_expert = 0;
uint32_t n_expert_used = 0;
uint32_t n_rel_attn_bkts = 0;
+ uint32_t n_vocab = 0;
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
uint32_t n_embd_head_k_mla = 0;
@@ -56,6 +59,7 @@ struct llama_hparams {
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
+ std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
@@ -159,6 +163,9 @@ struct llama_hparams {
// Block skip connection
bool n_bskcn(uint32_t n, uint32_t il) const;
+ // cross attention layers
+ bool cross_attention_layers(uint32_t il) const;
+
bool is_swa(uint32_t il) const;
};
diff --git a/src/llama-kv-cache.cpp b/src/llama-kv-cache.cpp
index 7c9d46d8..69f8d35a 100644
--- a/src/llama-kv-cache.cpp
+++ b/src/llama-kv-cache.cpp
@@ -95,8 +95,16 @@ bool llama_kv_cache_unified::init(
return false;
}
- ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
- ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
+ ggml_tensor * k, *v;
+
+ // for cross attention layers
+ if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
+ k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
+ v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
+ } else {
+ k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
+ v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
+ }
ggml_format_name(k, "cache_k_l%d", i);
ggml_format_name(v, "cache_v_l%d", i);
k_l.push_back(k);
diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp
index a012aeae..2e11507d 100644
--- a/src/llama-model-loader.cpp
+++ b/src/llama-model-loader.cpp
@@ -315,6 +315,8 @@ namespace GGUFMeta {
return true;
}
+ template bool llama_model_loader::get_arr<std::array<unsigned int, 512>>(enum llm_kv kid, std::array<unsigned int, 512>& result, bool required);
+
template<typename T, size_t N_MAX>
bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) {
const int kid = gguf_find_key(meta.get(), key.c_str());
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index 572378c9..9d099f11 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -423,6 +423,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
// get general kv
ml.get_key(LLM_KV_GENERAL_NAME, name, false);
+ ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab, false);
// everything past this point is not vocab-related
if (hparams.vocab_only) {
@@ -434,6 +435,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
+ ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false);
if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
@@ -457,9 +459,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
+ std::fill(hparams.cross_attn_layers.begin(), hparams.cross_attn_layers.end(), -1);
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
+ ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
// n_head_kv is optional, default to n_head
hparams.n_head_kv_arr = hparams.n_head_arr;
@@ -512,7 +516,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
- if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
+ if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_MLLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
if (hparams.n_rot != hparams.n_embd_head_k) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
}
@@ -575,6 +579,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.use_kq_norm = false;
}
} break;
+ case LLM_ARCH_MLLAMA:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 40: type = LLM_TYPE_11B; break;
+ case 100: type = LLM_TYPE_90B; break;
+ default: type = LLM_TYPE_UNKNOWN;
+ }
+ } break;
case LLM_ARCH_DECI:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -1562,7 +1576,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
const int64_t n_embd_head_v = hparams.n_embd_head_v;
const int64_t n_ff = hparams.n_ff();
const int64_t n_embd_gqa = n_embd_v_gqa;
- const int64_t n_vocab = vocab.n_tokens();
+ const int64_t n_vocab = hparams.n_vocab;
const int64_t n_token_types = vocab.n_token_types();
const int64_t n_rot = hparams.n_rot;
const int64_t n_expert = hparams.n_expert;
@@ -1815,6 +1829,52 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
}
} break;
+ case LLM_ARCH_MLLAMA:
+ {
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8}, 0);
+
+ // output
+ {
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ // if output is NULL, init from the input tok embed
+ if (output == NULL) {
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ auto & layer = layers[i];
+
+ if (hparams.cross_attention_layers(i)) {
+ layer.cross_attn_k_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128}, 0);
+ layer.cross_attn_k_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024}, 0);
+ layer.cross_attn_o_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd}, 0);
+ layer.cross_attn_q_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128}, 0);
+ layer.cross_attn_q_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd}, 0);
+ layer.cross_attn_v_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024}, 0);
+ layer.cross_attn_attn_gate = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1}, 0);
+ layer.cross_attn_mlp_gate = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1}, 0);
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+ } else {
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+ layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
+ }
+ }
+ } break;
case LLM_ARCH_DECI:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -4707,6 +4767,246 @@ struct llm_build_llama : public llm_graph_context {
}
};
+struct llm_build_mllama: public llm_graph_context {
+ llm_build_mllama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ ggml_tensor * cur;
+ ggml_tensor * inpL;
+ ggml_tensor * inpCAS;
+
+ inpL = build_inp_embd(model.tok_embd);
+ inpCAS = build_inp_cross_attn_state();
+
+ // inp_pos - contains the positions
+ ggml_tensor * inp_pos = build_inp_pos();
+
+ auto * inp_attn = build_attn_inp_kv_unified();
+ const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
+
+ for (int il = 0; il < n_layer; ++il) {
+ ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = build_norm(inpL,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, il);
+ cb(cur, "attn_norm", il);
+
+ if (hparams.cross_attention_layers(il)) {
+ if (!ubatch.embd && !cparams.cross_attn) {
+ continue;
+ }
+
+ // cross attention layer
+ ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_q_proj, cur);
+ cb(Qcur, "Qcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ cb(Qcur, "Qcur", il);
+
+ Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
+ cb(Qcur, "Qcur", il);
+
+ Qcur = build_norm(Qcur, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, il);
+ cb(Qcur, "Qcur", il);
+
+ ggml_tensor * Kcur, * Vcur;
+ if (ubatch.embd) {
+ Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
+ cb(Kcur, "Kcur", il);
+
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
+ cb(Kcur, "Kcur", il);
+
+ Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
+ cb(Kcur, "Kcur", il);
+
+ Kcur = build_norm(Kcur, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, il);
+ cb(Kcur, "Kcur", il);
+
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self->k_l[il]));
+
+ Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
+ cb(Vcur, "Vcur", il);
+
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, 6404);
+ cb(Vcur, "Vcur", il);
+
+ Vcur = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
+ cb(Vcur, "Vcur", il);
+
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self->v_l[il]));
+ } else {
+ Kcur = ggml_view_tensor(ctx0, kv_self->k_l[il]);
+ cb(Kcur, "Kcur (view)", il);
+
+ Vcur = ggml_view_tensor(ctx0, kv_self->v_l[il]);
+ cb(Vcur, "Vcur (view)", il);
+ }
+
+ struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
+ cb(kq, "kq", il);
+
+ // TODO: apply causal masks
+ struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
+ cb(kq_soft_max, "kq_soft_max", il);
+
+ Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
+ cb(Vcur, "Vcur", il);
+
+ struct ggml_tensor * kqv = ggml_mul_mat(ctx0, Vcur, kq_soft_max);
+ cb(kqv, "kqv", il);
+
+ struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+ cb(kqv_merged, "kqv_merged", il);
+
+ cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
+ cb(cur, "kqv_merged_cont", il);
+
+ cur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_o_proj, cur);
+ cb(cur, "cur", il);
+
+ // TODO: do this in place once?
+ cur = ggml_mul(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_attn_gate));
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = build_norm(ffn_inp,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = build_ffn(cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
+ cb(cur, "ffn_out", il);
+
+ // TODO: do this inplace once?
+ cur = ggml_add_inplace(ctx0, ggml_mul_inplace(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_mlp_gate)), ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ cur = build_cvec(cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ } else {
+ // self attention layer
+
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
+ ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
+
+ // compute Q and K and RoPE them
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+ Qcur = ggml_rope_ext(
+ ctx0, Qcur, inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ Kcur = ggml_rope_ext(
+ ctx0, Kcur, inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ cur = build_attn(inp_attn, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = build_norm(ffn_inp,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = build_ffn(cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ cur = build_cvec(cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+ }
+
+ cur = inpL;
+
+ cur = build_norm(cur,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, -1);
+ cb(cur, "result_norm", -1);
+ res->t_embd = cur;
+
+ // lm_head
+ cur = build_lora_mm(model.output, cur);
+
+ cb(cur, "result_output", -1);
+ res->t_logits = cur;
+
+ ggml_build_forward_expand(gf, cur);
+ }
+};
+
struct llm_build_deci : public llm_graph_context {
llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -13063,6 +13363,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_llama>(*this, params, gf);
} break;
+ case LLM_ARCH_MLLAMA:
+ {
+ llm = std::make_unique<llm_build_mllama>(*this, params, gf);
+ } break;
case LLM_ARCH_DECI:
{
llm = std::make_unique<llm_build_deci>(*this, params, gf);
@@ -13424,6 +13728,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA:
case LLM_ARCH_LLAMA4:
+ case LLM_ARCH_MLLAMA:
case LLM_ARCH_DECI:
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER:
diff --git a/src/llama-model.h b/src/llama-model.h
index 856e6042..6be91282 100644
--- a/src/llama-model.h
+++ b/src/llama-model.h
@@ -11,6 +11,7 @@
#include <string>
#include <unordered_map>
#include <vector>
+#include <stdexcept>
struct llama_cparams;
struct llama_ubatch;
@@ -73,6 +74,7 @@ enum llm_type {
LLM_TYPE_40B,
LLM_TYPE_65B,
LLM_TYPE_70B,
+ LLM_TYPE_90B,
LLM_TYPE_236B,
LLM_TYPE_290B,
LLM_TYPE_314B,
@@ -314,6 +316,16 @@ struct llama_layer {
struct ggml_tensor * bskcn_tv = nullptr;
+ // cross attention
+ struct ggml_tensor * cross_attn_k_norm = nullptr;
+ struct ggml_tensor * cross_attn_k_proj = nullptr;
+ struct ggml_tensor * cross_attn_o_proj = nullptr;
+ struct ggml_tensor * cross_attn_q_norm = nullptr;
+ struct ggml_tensor * cross_attn_q_proj = nullptr;
+ struct ggml_tensor * cross_attn_v_proj = nullptr;
+ struct ggml_tensor * cross_attn_attn_gate = nullptr;
+ struct ggml_tensor * cross_attn_mlp_gate = nullptr;
+
struct llama_layer_posnet posnet;
struct llama_layer_convnext convnext;
diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp
index 7dc54227..223e1f3f 100644
--- a/src/llama-quant.cpp
+++ b/src/llama-quant.cpp
@@ -639,7 +639,9 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
if (llama_model_has_encoder(&model)) {
n_attn_layer *= 3;
}
- GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
+ if (qs.n_attention_wv != n_attn_layer) {
+ LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
+ }
}
size_t total_size_org = 0;