mirror of
https://github.com/ollama/ollama.git
synced 2025-05-10 18:06:33 +02:00
This provides integration with the new Ollama engine
(5824541
next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.
In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
- Parallel processing
- Memory management for defragmentation and shifting
- Multi-modal modals
Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:
Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve
Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1
109 lines
2.7 KiB
Go
109 lines
2.7 KiB
Go
package mllama
|
|
|
|
import (
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/model"
|
|
)
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.BytePairEncoding
|
|
|
|
*VisionModel `gguf:"v,vision"`
|
|
*TextModel
|
|
|
|
Projector *nn.Linear `gguf:"mm.0"`
|
|
|
|
ImageProcessor
|
|
}
|
|
|
|
const (
|
|
crossAttentionLayer = iota
|
|
selfAttentionLayer
|
|
)
|
|
|
|
func New(c ml.Config) (model.Model, error) {
|
|
m := Model{
|
|
BytePairEncoding: model.NewBytePairEncoding(
|
|
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Types: c.Uints("tokenizer.ggml.token_type"),
|
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
|
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
|
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
|
},
|
|
),
|
|
ImageProcessor: newImageProcessor(c),
|
|
VisionModel: newVisionModel(c),
|
|
TextModel: newTextModel(c),
|
|
}
|
|
|
|
m.Cache = kvcache.NewWrapperCache(kvcache.NewEncoderCache(), kvcache.NewCausalCache(m.TextModel.Shift))
|
|
|
|
return &m, nil
|
|
}
|
|
|
|
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
|
var crossAttentionStates ml.Tensor
|
|
if opts.Images != nil {
|
|
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(opts.Images[0])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pixelValues, err := ctx.FromFloatSlice(f32s,
|
|
m.ImageProcessor.imageSize,
|
|
m.ImageProcessor.imageSize,
|
|
m.ImageProcessor.numChannels,
|
|
m.ImageProcessor.maxNumTiles,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
aspectRatio, err := ctx.FromIntSlice([]int32{int32(aspectRatioID)}, 1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
positions := make([]int32, 1601)
|
|
for i := range positions {
|
|
positions[i] = int32(i)
|
|
}
|
|
|
|
positionIDs, err := ctx.FromIntSlice(positions, len(positions))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
crossAttentionStates = m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
|
|
crossAttentionStates = m.Projector.Forward(ctx, crossAttentionStates)
|
|
}
|
|
|
|
inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// TODO: attention mask, cross attention mask
|
|
hiddenState := m.TextModel.Forward(ctx, inputs, positions, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache))
|
|
|
|
outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return hiddenState.Rows(ctx, outputs), nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("mllama", New)
|
|
}
|