rawaccel/driver/driver.cpp
a1xd 9010cc593a add independent xy accel to driver
other changes:

modifier_args type name is now settings,
which is now the type passed in driver ioctl

remove most settings/args verification from driver,
plan to let gui handle most of it

add another accel arg, rate, which is used to set
the 'accel' parameter of types which call exp (nat/sig),
might want to cap it

add (update) serializable DriverSettings (ModifierArgs) class to
gui and static methods for interop

remove properties from ManagedAccel, its now just a black box
for accessing modifier methods

add exception handling in wrapper_io to throw proper managed types

change SettingsManager::Startup to make a new settings file
if an error occurs during deserialization

change structure of accel types; how offset and weight are applied
now depend on additivity of types

remove tagged_union and add a handrolled variant/visit impl

AccelGui::UpdateActiveValueLabels currently broken for caps
and a few other args

remove gui default layout and initial natural accel setup

cli not updated
2020-08-31 19:41:21 -04:00

641 lines
18 KiB
C++

#include <rawaccel.hpp>
#include "driver.h"
#ifdef ALLOC_PRAGMA
#pragma alloc_text (INIT, DriverEntry)
#pragma alloc_text (PAGE, EvtDeviceAdd)
#pragma alloc_text (PAGE, EvtIoInternalDeviceControl)
#pragma alloc_text (PAGE, RawaccelControl)
#endif
namespace ra = rawaccel;
using milliseconds = double;
struct {
counter_t last_write = 0;
ra::settings args;
milliseconds tick_interval = 0; // set in DriverEntry
ra::mouse_modifier modifier;
} global;
VOID
RawaccelCallback(
IN PDEVICE_OBJECT DeviceObject,
IN PMOUSE_INPUT_DATA InputDataStart,
IN PMOUSE_INPUT_DATA InputDataEnd,
IN OUT PULONG InputDataConsumed
)
/*++
Routine Description:
Called when there are mouse packets to report to the RIT.
Arguments:
DeviceObject - Context passed during the connect IOCTL
InputDataStart - First packet to be reported
InputDataEnd - One past the last packet to be reported. Total number of
packets is equal to InputDataEnd - InputDataStart
InputDataConsumed - Set to the total number of packets consumed by the RIT
(via the function pointer we replaced in the connect
IOCTL)
--*/
{
WDFDEVICE hDevice = WdfWdmDeviceGetWdfDeviceHandle(DeviceObject);
PDEVICE_EXTENSION devExt = FilterGetData(hDevice);
if (!(InputDataStart->Flags & MOUSE_MOVE_ABSOLUTE)) {
auto num_packets = InputDataEnd - InputDataStart;
// if IO is backed up to the point where we get more than 1 packet here
// then applying accel is pointless as we can't get an accurate timing
bool enable_accel = num_packets == 1;
vec2d carry = devExt->carry;
auto it = InputDataStart;
do {
vec2d input = {
static_cast<double>(it->LastX),
static_cast<double>(it->LastY)
};
global.modifier.apply_rotation(input);
if (enable_accel) {
auto time_supplier = [=] {
counter_t now = KeQueryPerformanceCounter(NULL).QuadPart;
counter_t ticks = now - devExt->counter;
devExt->counter = now;
milliseconds time = ticks * global.tick_interval;
return clampsd(time, global.args.time_min, 100);
};
global.modifier.apply_acceleration(input, time_supplier);
}
global.modifier.apply_sensitivity(input);
double carried_result_x = input.x + carry.x;
double carried_result_y = input.y + carry.y;
LONG out_x = static_cast<LONG>(carried_result_x);
LONG out_y = static_cast<LONG>(carried_result_y);
carry.x = carried_result_x - out_x;
carry.y = carried_result_y - out_y;
it->LastX = out_x;
it->LastY = out_y;
} while (++it != InputDataEnd);
devExt->carry = carry;
}
(*(PSERVICE_CALLBACK_ROUTINE)devExt->UpperConnectData.ClassService)(
devExt->UpperConnectData.ClassDeviceObject,
InputDataStart,
InputDataEnd,
InputDataConsumed
);
}
#pragma warning(push)
#pragma warning(disable:28118) // this callback will run at IRQL=PASSIVE_LEVEL
_Use_decl_annotations_
VOID
RawaccelControl(
WDFQUEUE Queue,
WDFREQUEST Request,
size_t OutputBufferLength,
size_t InputBufferLength,
ULONG IoControlCode
)
/*++
Routine Description:
This event is called when the framework receives IRP_MJ_DEVICE_CONTROL
requests from the system.
Arguments:
Queue - Handle to the framework queue object that is associated
with the I/O request.
Request - Handle to a framework request object.
OutputBufferLength - length of the request's output buffer,
if an output buffer is available.
InputBufferLength - length of the request's input buffer,
if an input buffer is available.
IoControlCode - the driver-defined or system-defined I/O control code
(IOCTL) that is associated with the request.
Return Value:
VOID
--*/
{
NTSTATUS status;
void* buffer;
size_t size;
UNREFERENCED_PARAMETER(Queue);
UNREFERENCED_PARAMETER(IoControlCode);
PAGED_CODE();
DebugPrint(("Ioctl received into filter control object.\n"));
if (InputBufferLength == sizeof(ra::settings)) {
constexpr milliseconds WRITE_COOLDOWN_TIME = 1000;
counter_t now = KeQueryPerformanceCounter(NULL).QuadPart;
counter_t ticks = now - global.last_write;
milliseconds time = ticks * global.tick_interval;
if (global.last_write > 0 && time < WRITE_COOLDOWN_TIME) {
DebugPrint(("RA write on cooldown\n"));
// status maps to win32 error code 170: ERROR_BUSY
WdfRequestComplete(Request, STATUS_ENCOUNTERED_WRITE_IN_PROGRESS);
return;
}
status = WdfRequestRetrieveInputBuffer(
Request,
sizeof(ra::settings),
&buffer,
&size
);
if (!NT_SUCCESS(status)) {
DebugPrint(("RetrieveInputBuffer failed: 0x%x\n", status));
// status maps to win32 error code 1359: ERROR_INTERNAL_ERROR
WdfRequestComplete(Request, STATUS_MESSAGE_LOST);
return;
}
global.args = *reinterpret_cast<ra::settings*>(buffer);
global.modifier = { global.args };
global.last_write = now;
WdfRequestComplete(Request, STATUS_SUCCESS);
}
else if (OutputBufferLength == sizeof(ra::settings)) {
status = WdfRequestRetrieveOutputBuffer(
Request,
sizeof(ra::settings),
&buffer,
&size
);
if (!NT_SUCCESS(status)) {
DebugPrint(("RetrieveOutputBuffer failed: 0x%x\n", status));
// status maps to win32 error code 1359: ERROR_INTERNAL_ERROR
WdfRequestComplete(Request, STATUS_MESSAGE_LOST);
return;
}
*reinterpret_cast<ra::settings*>(buffer) = global.args;
WdfRequestComplete(Request, STATUS_SUCCESS);
}
else {
DebugPrint(("Received unknown request: in %uB, out %uB\n", InputBufferLength, OutputBufferLength));
// status maps to win32 error code 1784: ERROR_INVALID_USER_BUFFER
WdfRequestComplete(Request, STATUS_INVALID_BUFFER_SIZE);
}
}
#pragma warning(pop) // enable 28118 again
NTSTATUS
DriverEntry(
IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath
)
/*++
Routine Description:
Installable driver initialization entry point.
This entry point is called directly by the I/O system.
--*/
{
WDF_DRIVER_CONFIG config;
NTSTATUS status;
WDFDRIVER driver;
DebugPrint(("km accel filter.\n"));
DebugPrint(("Built %s %s\n", __DATE__, __TIME__));
// Initialize driver config to control the attributes that
// are global to the driver. Note that framework by default
// provides a driver unload routine. If you create any resources
// in the DriverEntry and want to be cleaned in driver unload,
// you can override that by manually setting the EvtDriverUnload in the
// config structure. In general xxx_CONFIG_INIT macros are provided to
// initialize most commonly used members.
WDF_DRIVER_CONFIG_INIT(
&config,
EvtDeviceAdd
);
//
// Create a framework driver object to represent our driver.
//
status = WdfDriverCreate(DriverObject,
RegistryPath,
WDF_NO_OBJECT_ATTRIBUTES,
&config,
&driver);
if (NT_SUCCESS(status)) {
LARGE_INTEGER freq;
KeQueryPerformanceCounter(&freq);
global.tick_interval = 1e3 / freq.QuadPart;
CreateControlDevice(driver);
}
else {
DebugPrint(("WdfDriverCreate failed with status 0x%x\n", status));
}
return status;
}
inline
VOID
CreateControlDevice(WDFDRIVER Driver)
/*++
Routine Description:
This routine is called to create a control device object so that application
can talk to the filter driver directly instead of going through the entire
device stack. This kind of control device object is useful if the filter
driver is underneath another driver which prevents ioctls not known to it
or if the driver's dispatch routine is owned by some other (port/class)
driver and it doesn't allow any custom ioctls.
Arguments:
Driver - Handle to wdf driver object.
Return Value:
WDF status code
--*/
{
PWDFDEVICE_INIT pInit = NULL;
WDFDEVICE controlDevice = NULL;
WDF_IO_QUEUE_CONFIG ioQueueConfig;
NTSTATUS status;
WDFQUEUE queue;
DECLARE_CONST_UNICODE_STRING(ntDeviceName, NTDEVICE_NAME);
DECLARE_CONST_UNICODE_STRING(symbolicLinkName, SYMBOLIC_NAME_STRING);
DebugPrint(("Creating Control Device\n"));
//
//
// In order to create a control device, we first need to allocate a
// WDFDEVICE_INIT structure and set all properties.
//
pInit = WdfControlDeviceInitAllocate(
Driver,
&SDDL_DEVOBJ_SYS_ALL_ADM_RWX_WORLD_RW_RES_R
);
if (pInit == NULL) {
status = STATUS_INSUFFICIENT_RESOURCES;
goto Error;
}
//
// Set exclusive to false so that more than one app can talk to the
// control device simultaneously.
//
WdfDeviceInitSetExclusive(pInit, FALSE);
status = WdfDeviceInitAssignName(pInit, &ntDeviceName);
if (!NT_SUCCESS(status)) {
goto Error;
}
status = WdfDeviceCreate(&pInit,
WDF_NO_OBJECT_ATTRIBUTES,
&controlDevice);
if (!NT_SUCCESS(status)) {
goto Error;
}
//
// Create a symbolic link for the control object so that usermode can open
// the device.
//
status = WdfDeviceCreateSymbolicLink(controlDevice, &symbolicLinkName);
if (!NT_SUCCESS(status)) {
goto Error;
}
//
// Configure the default queue associated with the control device object
// to be Serial so that request passed to RawaccelControl are serialized.
//
WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE(&ioQueueConfig,
WdfIoQueueDispatchSequential);
ioQueueConfig.EvtIoDeviceControl = RawaccelControl;
//
// Framework by default creates non-power managed queues for
// filter drivers.
//
status = WdfIoQueueCreate(controlDevice,
&ioQueueConfig,
WDF_NO_OBJECT_ATTRIBUTES,
&queue // pointer to default queue
);
if (!NT_SUCCESS(status)) {
goto Error;
}
//
// Control devices must notify WDF when they are done initializing. I/O is
// rejected until this call is made.
//
WdfControlFinishInitializing(controlDevice);
return;
Error:
if (pInit != NULL) WdfDeviceInitFree(pInit);
if (controlDevice != NULL) {
//
// Release the reference on the newly created object, since
// we couldn't initialize it.
//
WdfObjectDelete(controlDevice);
}
DebugPrint(("CreateControlDevice failed\n", status));
}
NTSTATUS
EvtDeviceAdd(
IN WDFDRIVER Driver,
IN PWDFDEVICE_INIT DeviceInit
)
/*++
Routine Description:
EvtDeviceAdd is called by the framework in response to AddDevice
call from the PnP manager. Here you can query the device properties
using WdfFdoInitWdmGetPhysicalDevice/IoGetDeviceProperty and based
on that, decide to create a filter device object and attach to the
function stack.
If you are not interested in filtering this particular instance of the
device, you can just return STATUS_SUCCESS without creating a framework
device.
Arguments:
Driver - Handle to a framework driver object created in DriverEntry
DeviceInit - Pointer to a framework-allocated WDFDEVICE_INIT structure.
Return Value:
NTSTATUS
--*/
{
WDF_OBJECT_ATTRIBUTES deviceAttributes;
NTSTATUS status;
WDFDEVICE hDevice;
WDF_IO_QUEUE_CONFIG ioQueueConfig;
UNREFERENCED_PARAMETER(Driver);
PAGED_CODE();
DebugPrint(("Enter FilterEvtDeviceAdd \n"));
//
// Tell the framework that you are filter driver. Framework
// takes care of inherting all the device flags & characterstics
// from the lower device you are attaching to.
//
WdfFdoInitSetFilter(DeviceInit);
WdfDeviceInitSetDeviceType(DeviceInit, FILE_DEVICE_MOUSE);
WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE(&deviceAttributes,
DEVICE_EXTENSION);
//
// Create a framework device object. This call will in turn create
// a WDM deviceobject, attach to the lower stack and set the
// appropriate flags and attributes.
//
status = WdfDeviceCreate(&DeviceInit, &deviceAttributes, &hDevice);
if (!NT_SUCCESS(status)) {
DebugPrint(("WdfDeviceCreate failed with status code 0x%x\n", status));
return status;
}
//
// Configure the default queue to be Parallel. Do not use sequential queue
// if this driver is going to be filtering PS2 ports because it can lead to
// deadlock. The PS2 port driver sends a request to the top of the stack when it
// receives an ioctl request and waits for it to be completed. If you use a
// a sequential queue, this request will be stuck in the queue because of the
// outstanding ioctl request sent earlier to the port driver.
//
WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE(&ioQueueConfig,
WdfIoQueueDispatchParallel);
//
// Framework by default creates non-power managed queues for
// filter drivers.
//
ioQueueConfig.EvtIoInternalDeviceControl = EvtIoInternalDeviceControl;
status = WdfIoQueueCreate(hDevice,
&ioQueueConfig,
WDF_NO_OBJECT_ATTRIBUTES,
WDF_NO_HANDLE // pointer to default queue
);
if (!NT_SUCCESS(status)) {
DebugPrint( ("WdfIoQueueCreate failed 0x%x\n", status));
return status;
}
return status;
}
VOID
EvtIoInternalDeviceControl(
IN WDFQUEUE Queue,
IN WDFREQUEST Request,
IN size_t OutputBufferLength,
IN size_t InputBufferLength,
IN ULONG IoControlCode
)
/*++
Routine Description:
This routine is the dispatch routine for internal device control requests.
There are two specific control codes that are of interest:
IOCTL_INTERNAL_MOUSE_CONNECT:
Store the old context and function pointer and replace it with our own.
This makes life much simpler than intercepting IRPs sent by the RIT and
modifying them on the way back up.
IOCTL_INTERNAL_I8042_HOOK_MOUSE:
Add in the necessary function pointers and context values so that we can
alter how the ps/2 mouse is initialized.
NOTE: Handling IOCTL_INTERNAL_I8042_HOOK_MOUSE is *NOT* necessary if
all you want to do is filter MOUSE_INPUT_DATAs. You can remove
the handling code and all related device extension fields and
functions to conserve space.
--*/
{
PDEVICE_EXTENSION devExt;
PCONNECT_DATA connectData;
NTSTATUS status = STATUS_SUCCESS;
WDFDEVICE hDevice;
size_t length;
UNREFERENCED_PARAMETER(OutputBufferLength);
UNREFERENCED_PARAMETER(InputBufferLength);
PAGED_CODE();
hDevice = WdfIoQueueGetDevice(Queue);
devExt = FilterGetData(hDevice);
switch (IoControlCode) {
//
// Connect a mouse class device driver to the port driver.
//
case IOCTL_INTERNAL_MOUSE_CONNECT:
//
// Only allow one connection.
//
if (devExt->UpperConnectData.ClassService != NULL) {
status = STATUS_SHARING_VIOLATION;
break;
}
//
// Copy the connection parameters to the device extension.
//
status = WdfRequestRetrieveInputBuffer(Request,
sizeof(CONNECT_DATA),
reinterpret_cast<PVOID*>(&connectData),
&length);
if(!NT_SUCCESS(status)){
DebugPrint(("WdfRequestRetrieveInputBuffer failed %x\n", status));
break;
}
devExt->counter = 0;
devExt->carry = {};
devExt->UpperConnectData = *connectData;
//
// Hook into the report chain. Everytime a mouse packet is reported to
// the system, RawaccelCallback will be called
//
connectData->ClassDeviceObject = WdfDeviceWdmGetDeviceObject(hDevice);
connectData->ClassService = RawaccelCallback;
break;
//
// Disconnect a mouse class device driver from the port driver.
//
case IOCTL_INTERNAL_MOUSE_DISCONNECT:
//
// Clear the connection parameters in the device extension.
//
// devExt->UpperConnectData.ClassDeviceObject = NULL;
// devExt->UpperConnectData.ClassService = NULL;
status = STATUS_NOT_IMPLEMENTED;
break;
case IOCTL_MOUSE_QUERY_ATTRIBUTES:
default:
break;
}
if (!NT_SUCCESS(status)) {
WdfRequestComplete(Request, status);
return;
}
DispatchPassThrough(Request, WdfDeviceGetIoTarget(hDevice));
}
inline
VOID
DispatchPassThrough(
_In_ WDFREQUEST Request,
_In_ WDFIOTARGET Target
)
/*++
Routine Description:
Passes a request on to the lower driver.
--*/
{
//
// Pass the IRP to the target
//
WDF_REQUEST_SEND_OPTIONS options;
BOOLEAN ret;
NTSTATUS status = STATUS_SUCCESS;
//
// We are not interested in post processing the IRP so
// fire and forget.
//
WDF_REQUEST_SEND_OPTIONS_INIT(&options,
WDF_REQUEST_SEND_OPTION_SEND_AND_FORGET);
ret = WdfRequestSend(Request, Target, &options);
if (ret == FALSE) {
status = WdfRequestGetStatus(Request);
DebugPrint(("WdfRequestSend failed: 0x%x\n", status));
WdfRequestComplete(Request, status);
}
return;
}