* Move quantization logic to GGML via new backend
This moves the model aware logic to Go code and calls GGMLs quantization code for model creation.
* Remove "add model quantizations"
This is no longer needed now that quantization is implemented in Go+GGML code directly.
* increase default context length to 4096
We lower the default numParallel from 4 to 2 and use these "savings" to
double the default context length from 2048 to 4096.
We're memory neutral in cases when we previously would've used
numParallel == 4, but we add the following mitigation to handle some
cases where we would have previously fallen back to 1x2048 due to low
VRAM: we decide between 2048 and 4096 using a runtime check, choosing
2048 if we're on a one GPU system with total VRAM of <= 4 GB. We
purposefully don't check the available VRAM because we don't want the
context window size to change unexpectedly based on the available VRAM.
We plan on making the default even larger, but this is a relatively
low-risk change we can make to quickly double it.
* fix tests
add an explicit context length so they don't get truncated. The code
that converts -1 from being a signal for doing a runtime check isn't
running as part of these tests.
* tweak small gpu message
* clarify context length default
also make it actually show up in `ollama serve --help`
This commit adds retry/backoff to the registry client for pull requests.
Also, revert progress indication to match original client's until we can
"get it right."
Also, make WithTrace wrap existing traces instead of clobbering them.
This allows clients to compose traces.
With support for multimodal models becoming more varied and common it is important for clients to be able to easily see what capabilities a model has. Retuning these from the show endpoint will allow clients to easily see what a model can do.
Add metadata and tensor information to the show command to be able to
see more information about a model. This outputs the same data as
shown on the model details page on ollama.com
- output backend system info when initializing the backend. this ensures
this information is always present without needing to be called
explicitly
- convert to structured logging
- enumerate devices rather than backends since devices are ordered
- track device indices grouped by device name
* Include unified vision layers in memory prediction
For newer vision models with a single gguf, include
the projection estimates.
* Adjust CLI to handle both styles of vision model metadata
* Wire up new tokenizers for new engine
If we're loading the new engine, utilize the new model
text processor instead of calling into cgo wrappers for
llama.cpp. This also cleans up some tech debt from the
older tokenization flow for the C++ server which was
no longer used.
This also adjusts the grammar handling logic to pass
through to the new engine instead of utilizing the cgo
schema to grammar call.
* Lay foundation for auto selection of new engine
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.
In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
- Parallel processing
- Memory management for defragmentation and shifting
- Multi-modal modals
Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:
Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve
Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1
* llama: wire up builtin runner
This adds a new entrypoint into the ollama CLI to run the cgo built runner.
On Mac arm64, this will have GPU support, but on all other platforms it will
be the lowest common denominator CPU build. After we fully transition
to the new Go runners more tech-debt can be removed and we can stop building
the "default" runner via make and rely on the builtin always.
* build: Make target improvements
Add a few new targets and help for building locally.
This also adjusts the runner lookup to favor local builds, then
runners relative to the executable, and finally payloads.
* Support customized CPU flags for runners
This implements a simplified custom CPU flags pattern for the runners.
When built without overrides, the runner name contains the vector flag
we check for (AVX) to ensure we don't try to run on unsupported systems
and crash. If the user builds a customized set, we omit the naming
scheme and don't check for compatibility. This avoids checking
requirements at runtime, so that logic has been removed as well. This
can be used to build GPU runners with no vector flags, or CPU/GPU
runners with additional flags (e.g. AVX512) enabled.
* Use relative paths
If the user checks out the repo in a path that contains spaces, make gets
really confused so use relative paths for everything in-repo to avoid breakage.
* Remove payloads from main binary
* install: clean up prior libraries
This removes support for v0.3.6 and older versions (before the tar bundle)
and ensures we clean up prior libraries before extracting the bundle(s).
Without this change, runners and dependent libraries could leak when we
update and lead to subtle runtime errors.
After a user pushes their model it is not clear what to do next. Add a link
to the output of `ollama push` that tells the user where their model can now
be found.
In the past the ollama.com server would return a JWT that contained
information about the user being authenticated. This was used to return
different error messages to the user. This is no longer possible since the
token used to authenticate does not contain information about the user
anymore. Removing this code that no longer works.
Follow up changes will improve the error messages returned here, but good to
clean up first.
This avoids emitting the progress indicators to stderr, and the interactive
prompts to the output file or pipe. Running "ollama run model > out.txt"
now exits immediately, and "echo hello | ollama run model > out.txt"
produces zero stderr output and a typical response in out.txt
Provide a mechanism for users to set aside an amount of VRAM on each GPU
to make room for other applications they want to start after Ollama, or workaround
memory prediction bugs
* Fix typo and improve readability
Summary:
* Rename updatAvailableMenuID to updateAvailableMenuID
* Replace unused cmd parameter with _ in RunServer function
* Fix typos in comments
(cherry picked from commit 5b8715f0b04773369e8eb1f9e6737995a0ab3ba7)
* Update api/client.go
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
---------
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
The OLLAMA_MAX_VRAM env var was a temporary workaround for OOM
scenarios. With Concurrency this was no longer wired up, and the simplistic
value doesn't map to multi-GPU setups. Users can still set `num_gpu`
to limit memory usage to avoid OOM if we get our predictions wrong.