ollama/llama/README.md
Michael Yang dcfb7a105c
next build (#8539)
* add build to .dockerignore

* test: only build one arch

* add build to .gitignore

* fix ccache path

* filter amdgpu targets

* only filter if autodetecting

* Don't clobber gpu list for default runner

This ensures the GPU specific environment variables are set properly

* explicitly set CXX compiler for HIP

* Update build_windows.ps1

This isn't complete, but is close.  Dependencies are missing, and it only builds the "default" preset.

* build: add ollama subdir

* add .git to .dockerignore

* docs: update development.md

* update build_darwin.sh

* remove unused scripts

* llm: add cwd and build/lib/ollama to library paths

* default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS

* add additional cmake output vars for msvc

* interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12

* remove unncessary filepath.Dir, cleanup

* add hardware-specific directory to path

* use absolute server path

* build: linux arm

* cmake install targets

* remove unused files

* ml: visit each library path once

* build: skip cpu variants on arm

* build: install cpu targets

* build: fix workflow

* shorter names

* fix rocblas install

* docs: clean up development.md

* consistent build dir removal in development.md

* silence -Wimplicit-function-declaration build warnings in ggml-cpu

* update readme

* update development readme

* llm: update library lookup logic now that there is one runner (#8587)

* tweak development.md

* update docs

* add windows cuda/rocm tests

---------

Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-01-29 15:03:38 -08:00

55 lines
2.3 KiB
Markdown

# `llama`
This package provides Go bindings to [llama.cpp](https://github.com/ggerganov/llama.cpp).
## Vendoring
Ollama vendors [llama.cpp](https://github.com/ggerganov/llama.cpp/) and [ggml](https://github.com/ggerganov/llama.cpp/tree/master/ggml/src). While we generally strive to contribute changes back upstream to avoid drift, we carry a small set of patches which are applied to the tracking commit.
If you update the vendoring code, start by running the following command to establish the tracking llama.cpp repo in the `./vendor/` directory.
```
make -f Makefile.sync apply-patches
```
### Updating Base Commit
**Pin to new base commit**
To change the base commit, update `FETCH_HEAD` in Makefile.sync.
When updating to a newer base commit, the existing patches may not apply cleanly and require manual merge resolution.
Start by applying the patches. If any of the patches have conflicts, the `git am` will stop at the first failure.
```
make -f Makefile.sync apply-patches
```
If there are conflicts, you will see an error message. Resolve the conflicts in `./vendor/`, and continue the patch series with `git am --continue` and rerun `make -f Makefile.sync apply-patches`. Repeat until all patches are successfully applied.
Once all patches are applied, commit the changes to the tracking repository.
```
make -f Makefile.sync format-patches sync
```
### Generating Patches
When working on new fixes or features that impact vendored code, use the following model. First get a clean tracking repo with all current patches applied:
```
make -f Makefile.sync clean apply-patches
```
Iterate until you're ready to submit PRs. Once your code is ready, commit a change in the `./vendor/` directory, then generate the patches for ollama with
```
make -f Makefile.sync format-patches
```
In your `./vendor/` directory, create a branch, and cherry-pick the new commit to that branch, then submit a PR upstream to llama.cpp.
Commit the changes in the ollama repo and submit a PR to Ollama, which will include the vendored code update with your change, along with the patches.
After your PR upstream is merged, follow the **Updating Base Commit** instructions above, however first remove your patch before running `apply-patches` since the new base commit contains your change already.