mirror of
https://github.com/ollama/ollama.git
synced 2025-05-10 18:06:33 +02:00
3594 lines
153 KiB
C++
Vendored
3594 lines
153 KiB
C++
Vendored
// NOTE: This is modified from clip.cpp only for LLaVA,
|
|
// so there might be still unnecessary artifacts hanging around
|
|
// I'll gradually clean and extend it
|
|
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
|
|
#include "clip.h"
|
|
#include "clip-impl.h"
|
|
#include "ggml.h"
|
|
#include "ggml-cpp.h"
|
|
#include "ggml-cpu.h"
|
|
#include "ggml-alloc.h"
|
|
#include "ggml-backend.h"
|
|
#include "gguf.h"
|
|
|
|
#define STB_IMAGE_IMPLEMENTATION
|
|
#include "stb_image.h"
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <map>
|
|
#include <regex>
|
|
#include <stdexcept>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
#include <sstream>
|
|
#include <cinttypes>
|
|
#include <limits>
|
|
#include <array>
|
|
#include <numeric>
|
|
|
|
#if defined(_WIN32)
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif
|
|
#include <windows.h>
|
|
#if __GLIBCXX__
|
|
#include <cstdio>
|
|
#include <ext/stdio_filebuf.h>
|
|
#include <fcntl.h>
|
|
#endif
|
|
#endif
|
|
|
|
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
|
|
|
|
//#define CLIP_DEBUG_FUNCTIONS
|
|
|
|
#ifdef CLIP_DEBUG_FUNCTIONS
|
|
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
|
|
std::ofstream file(filename, std::ios::binary);
|
|
if (!file.is_open()) {
|
|
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
|
|
return;
|
|
}
|
|
|
|
// PPM header: P6 format, width, height, and max color value
|
|
file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
|
|
|
|
// Write pixel data
|
|
for (size_t i = 0; i < img.buf.size(); i += 3) {
|
|
// PPM expects binary data in RGB format, which matches our image buffer
|
|
file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
|
|
}
|
|
|
|
file.close();
|
|
}
|
|
|
|
static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
|
|
std::ofstream file(filename, std::ios::binary);
|
|
if (!file.is_open()) {
|
|
LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
|
|
return;
|
|
}
|
|
|
|
int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
|
|
int bytesPerPixel = 3;
|
|
int widthInBytes = img.nx * bytesPerPixel;
|
|
int paddingAmount = (4 - (widthInBytes % 4)) % 4;
|
|
int stride = widthInBytes + paddingAmount;
|
|
|
|
// Bitmap file header
|
|
unsigned char fileHeader[14] = {
|
|
'B','M', // Signature
|
|
0,0,0,0, // Image file size in bytes
|
|
0,0,0,0, // Reserved
|
|
54,0,0,0 // Start of pixel array
|
|
};
|
|
|
|
// Total file size
|
|
fileSize = 54 + (stride * img.ny);
|
|
fileHeader[2] = (unsigned char)(fileSize);
|
|
fileHeader[3] = (unsigned char)(fileSize >> 8);
|
|
fileHeader[4] = (unsigned char)(fileSize >> 16);
|
|
fileHeader[5] = (unsigned char)(fileSize >> 24);
|
|
|
|
// Bitmap information header (BITMAPINFOHEADER)
|
|
unsigned char infoHeader[40] = {
|
|
40,0,0,0, // Size of this header (40 bytes)
|
|
0,0,0,0, // Image width
|
|
0,0,0,0, // Image height
|
|
1,0, // Number of color planes
|
|
24,0, // Bits per pixel
|
|
0,0,0,0, // No compression
|
|
0,0,0,0, // Image size (can be 0 for no compression)
|
|
0,0,0,0, // X pixels per meter (not specified)
|
|
0,0,0,0, // Y pixels per meter (not specified)
|
|
0,0,0,0, // Total colors (color table not used)
|
|
0,0,0,0 // Important colors (all are important)
|
|
};
|
|
|
|
// Width and height in the information header
|
|
infoHeader[4] = (unsigned char)(img.nx);
|
|
infoHeader[5] = (unsigned char)(img.nx >> 8);
|
|
infoHeader[6] = (unsigned char)(img.nx >> 16);
|
|
infoHeader[7] = (unsigned char)(img.nx >> 24);
|
|
infoHeader[8] = (unsigned char)(img.ny);
|
|
infoHeader[9] = (unsigned char)(img.ny >> 8);
|
|
infoHeader[10] = (unsigned char)(img.ny >> 16);
|
|
infoHeader[11] = (unsigned char)(img.ny >> 24);
|
|
|
|
// Write file headers
|
|
file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
|
|
file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
|
|
|
|
// Pixel data
|
|
std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
|
|
for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
|
|
for (int x = 0; x < img.nx; ++x) {
|
|
// Each pixel
|
|
size_t pixelIndex = (y * img.nx + x) * 3;
|
|
unsigned char pixel[3] = {
|
|
img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
|
|
img.buf[pixelIndex + 1],
|
|
img.buf[pixelIndex]
|
|
};
|
|
file.write(reinterpret_cast<char*>(pixel), 3);
|
|
}
|
|
// Write padding for the row
|
|
file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
|
|
}
|
|
|
|
file.close();
|
|
}
|
|
|
|
// debug function to convert f32 to u8
|
|
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
|
|
dst.nx = src.nx;
|
|
dst.ny = src.ny;
|
|
dst.buf.resize(3 * src.nx * src.ny);
|
|
for (size_t i = 0; i < src.buf.size(); ++i) {
|
|
dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
//
|
|
// clip layers
|
|
//
|
|
|
|
enum patch_merge_type {
|
|
PATCH_MERGE_FLAT,
|
|
PATCH_MERGE_SPATIAL_UNPAD,
|
|
};
|
|
|
|
struct clip_hparams {
|
|
int32_t image_size;
|
|
int32_t patch_size;
|
|
int32_t hidden_size;
|
|
int32_t n_intermediate;
|
|
int32_t projection_dim;
|
|
int32_t n_head;
|
|
int32_t n_layer;
|
|
int32_t proj_scale_factor = 0; // idefics3
|
|
|
|
patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
|
|
|
|
float eps = 1e-6;
|
|
float rope_theta = 0.0;
|
|
|
|
std::vector<int32_t> image_grid_pinpoints;
|
|
int32_t image_crop_resolution;
|
|
std::unordered_set<int32_t> vision_feature_layer;
|
|
int32_t attn_window_size = 0;
|
|
int32_t n_wa_pattern = 0;
|
|
};
|
|
|
|
struct clip_layer {
|
|
// attention
|
|
struct ggml_tensor * k_w = nullptr;
|
|
struct ggml_tensor * k_b = nullptr;
|
|
struct ggml_tensor * q_w = nullptr;
|
|
struct ggml_tensor * q_b = nullptr;
|
|
struct ggml_tensor * v_w = nullptr;
|
|
struct ggml_tensor * v_b = nullptr;
|
|
|
|
struct ggml_tensor * o_w = nullptr;
|
|
struct ggml_tensor * o_b = nullptr;
|
|
|
|
// layernorm 1
|
|
struct ggml_tensor * ln_1_w = nullptr;
|
|
struct ggml_tensor * ln_1_b = nullptr;
|
|
|
|
// ff
|
|
struct ggml_tensor * ff_i_w = nullptr; // legacy naming
|
|
struct ggml_tensor * ff_i_b = nullptr; // legacy naming
|
|
struct ggml_tensor * ff_o_w = nullptr; // legacy naming
|
|
struct ggml_tensor * ff_o_b = nullptr; // legacy naming
|
|
|
|
struct ggml_tensor * ff_up_w = nullptr;
|
|
struct ggml_tensor * ff_up_b = nullptr;
|
|
struct ggml_tensor * ff_gate_w = nullptr;
|
|
struct ggml_tensor * ff_gate_b = nullptr;
|
|
struct ggml_tensor * ff_down_w = nullptr;
|
|
struct ggml_tensor * ff_down_b = nullptr;
|
|
|
|
struct ggml_tensor * ff_g_w = NULL;
|
|
struct ggml_tensor * ff_g_b = NULL;
|
|
|
|
// layernorm 2
|
|
struct ggml_tensor * ln_2_w = nullptr;
|
|
struct ggml_tensor * ln_2_b = nullptr;
|
|
};
|
|
|
|
struct clip_vision_model {
|
|
struct clip_hparams hparams;
|
|
|
|
// embeddings
|
|
struct ggml_tensor * class_embedding = nullptr;
|
|
struct ggml_tensor * patch_embeddings_0 = nullptr;
|
|
struct ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
|
|
struct ggml_tensor * patch_bias = nullptr;
|
|
struct ggml_tensor * position_embeddings = nullptr;
|
|
|
|
struct ggml_tensor * pre_ln_w = nullptr;
|
|
struct ggml_tensor * pre_ln_b = nullptr;
|
|
|
|
std::vector<clip_layer> layers;
|
|
|
|
struct ggml_tensor * post_ln_w;
|
|
struct ggml_tensor * post_ln_b;
|
|
|
|
struct ggml_tensor * projection;
|
|
|
|
// LLaVA projection
|
|
struct ggml_tensor * mm_0_w = nullptr;
|
|
struct ggml_tensor * mm_0_b = nullptr;
|
|
struct ggml_tensor * mm_2_w = nullptr;
|
|
struct ggml_tensor * mm_2_b = nullptr;
|
|
|
|
struct ggml_tensor * image_newline = nullptr;
|
|
|
|
// Yi type models with mlp+normalization projection
|
|
struct ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
|
|
struct ggml_tensor * mm_1_b = nullptr;
|
|
struct ggml_tensor * mm_3_w = nullptr;
|
|
struct ggml_tensor * mm_3_b = nullptr;
|
|
struct ggml_tensor * mm_4_w = nullptr;
|
|
struct ggml_tensor * mm_4_b = nullptr;
|
|
|
|
//GLMV-Edge projection
|
|
struct ggml_tensor * mm_model_adapter_conv_w = nullptr;
|
|
struct ggml_tensor * mm_model_adapter_conv_b = nullptr;
|
|
|
|
// MobileVLM projection
|
|
struct ggml_tensor * mm_model_mlp_1_w = nullptr;
|
|
struct ggml_tensor * mm_model_mlp_1_b = nullptr;
|
|
struct ggml_tensor * mm_model_mlp_3_w = nullptr;
|
|
struct ggml_tensor * mm_model_mlp_3_b = nullptr;
|
|
struct ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
|
|
struct ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
|
|
struct ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
|
|
struct ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
|
|
struct ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
|
|
struct ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
|
|
struct ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
|
|
struct ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
|
|
struct ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
|
|
struct ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
|
|
struct ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
|
|
struct ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
|
|
struct ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
|
|
struct ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
|
|
struct ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
|
|
struct ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
|
|
struct ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
|
|
struct ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
|
|
struct ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
|
|
struct ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
|
|
|
|
// MobileVLM_V2 projection
|
|
struct ggml_tensor * mm_model_mlp_0_w = nullptr;
|
|
struct ggml_tensor * mm_model_mlp_0_b = nullptr;
|
|
struct ggml_tensor * mm_model_mlp_2_w = nullptr;
|
|
struct ggml_tensor * mm_model_mlp_2_b = nullptr;
|
|
struct ggml_tensor * mm_model_peg_0_w = nullptr;
|
|
struct ggml_tensor * mm_model_peg_0_b = nullptr;
|
|
|
|
// MINICPMV projection
|
|
struct ggml_tensor * mm_model_pos_embed_k = nullptr;
|
|
struct ggml_tensor * mm_model_query = nullptr;
|
|
struct ggml_tensor * mm_model_proj = nullptr;
|
|
struct ggml_tensor * mm_model_kv_proj = nullptr;
|
|
struct ggml_tensor * mm_model_attn_q_w = nullptr;
|
|
struct ggml_tensor * mm_model_attn_q_b = nullptr;
|
|
struct ggml_tensor * mm_model_attn_k_w = nullptr;
|
|
struct ggml_tensor * mm_model_attn_k_b = nullptr;
|
|
struct ggml_tensor * mm_model_attn_v_w = nullptr;
|
|
struct ggml_tensor * mm_model_attn_v_b = nullptr;
|
|
struct ggml_tensor * mm_model_attn_o_w = nullptr;
|
|
struct ggml_tensor * mm_model_attn_o_b = nullptr;
|
|
struct ggml_tensor * mm_model_ln_q_w = nullptr;
|
|
struct ggml_tensor * mm_model_ln_q_b = nullptr;
|
|
struct ggml_tensor * mm_model_ln_kv_w = nullptr;
|
|
struct ggml_tensor * mm_model_ln_kv_b = nullptr;
|
|
struct ggml_tensor * mm_model_ln_post_w = nullptr;
|
|
struct ggml_tensor * mm_model_ln_post_b = nullptr;
|
|
|
|
// gemma3
|
|
struct ggml_tensor * mm_input_proj_w = nullptr;
|
|
struct ggml_tensor * mm_soft_emb_norm_w = nullptr;
|
|
|
|
// pixtral
|
|
struct ggml_tensor * token_embd_img_break = nullptr;
|
|
};
|
|
|
|
struct clip_ctx {
|
|
bool has_llava_projector = false;
|
|
int minicpmv_version = 0;
|
|
|
|
struct clip_vision_model vision_model;
|
|
projector_type proj_type = PROJECTOR_TYPE_MLP;
|
|
|
|
int32_t max_feature_layer; // unused in newer models like gemma3
|
|
float image_mean[3];
|
|
float image_std[3];
|
|
bool use_gelu = false;
|
|
bool use_silu = false;
|
|
|
|
gguf_context_ptr ctx_gguf;
|
|
ggml_context_ptr ctx_data;
|
|
|
|
std::vector<uint8_t> buf_compute_meta;
|
|
|
|
std::vector<ggml_backend_t> backend_ptrs;
|
|
std::vector<ggml_backend_buffer_type_t> backend_buft;
|
|
|
|
ggml_backend_t backend;
|
|
ggml_backend_t backend_cpu;
|
|
ggml_backend_buffer_ptr buf;
|
|
|
|
int max_nodes = 8192;
|
|
ggml_backend_sched_ptr sched;
|
|
|
|
clip_image_size load_image_size;
|
|
|
|
clip_ctx(clip_context_params & ctx_params) {
|
|
backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
|
|
backend = ctx_params.use_gpu
|
|
? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
|
|
: nullptr;
|
|
|
|
if (backend) {
|
|
LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
|
|
backend_ptrs.push_back(backend);
|
|
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
|
|
} else {
|
|
backend = backend_cpu;
|
|
LOG_INF("%s: CLIP using CPU backend\n", __func__);
|
|
}
|
|
|
|
backend_ptrs.push_back(backend_cpu);
|
|
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
|
|
|
|
sched.reset(
|
|
ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false)
|
|
);
|
|
}
|
|
|
|
~clip_ctx() {
|
|
ggml_backend_free(backend);
|
|
if (backend != backend_cpu) {
|
|
ggml_backend_free(backend_cpu);
|
|
}
|
|
}
|
|
};
|
|
|
|
static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32 & img) {
|
|
const auto & model = ctx->vision_model;
|
|
const auto & hparams = model.hparams;
|
|
|
|
int image_size_width = img.nx;
|
|
int image_size_height = img.ny;
|
|
|
|
const int patch_size = hparams.patch_size;
|
|
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
|
const int hidden_size = hparams.hidden_size;
|
|
const int n_head = hparams.n_head;
|
|
const int d_head = hidden_size / n_head;
|
|
const int n_layer = hparams.n_layer;
|
|
const float eps = hparams.eps;
|
|
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ ctx->buf_compute_meta.size(),
|
|
/*.mem_buffer =*/ ctx->buf_compute_meta.data(),
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
|
|
ggml_context_ptr ctx0_ptr(ggml_init(params));
|
|
auto ctx0 = ctx0_ptr.get();
|
|
|
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
|
|
|
// input raw
|
|
struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
|
|
ggml_set_name(inp_raw, "inp_raw");
|
|
ggml_set_input(inp_raw);
|
|
|
|
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
|
inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
|
|
inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
|
|
inp = ggml_add(ctx0, inp, model.patch_bias);
|
|
|
|
// position embeddings
|
|
struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings);
|
|
|
|
// loop over layers
|
|
for (int il = 0; il < n_layer; il++) {
|
|
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
|
|
|
|
// layernorm1
|
|
{
|
|
cur = ggml_norm(ctx0, cur, eps);
|
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b);
|
|
}
|
|
|
|
// self-attention
|
|
{
|
|
|
|
struct ggml_tensor * Q =
|
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
|
|
|
|
Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
|
|
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
|
|
|
struct ggml_tensor * K =
|
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
|
|
|
|
K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
|
|
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
|
|
|
|
struct ggml_tensor * V =
|
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
|
|
|
|
V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
|
|
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
|
|
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
|
KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
|
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
|
|
KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
|
|
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
|
|
|
cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
|
|
}
|
|
|
|
// attention output
|
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
|
|
|
|
// re-add the layer input, e.g., residual
|
|
cur = ggml_add(ctx0, cur, embeddings);
|
|
|
|
embeddings = cur; // embeddings = residual, cur = hidden_states
|
|
|
|
// layernorm2
|
|
{
|
|
cur = ggml_norm(ctx0, cur, eps);
|
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
|
|
}
|
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
|
|
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
|
|
|
|
// siglip uses gelu
|
|
cur = ggml_gelu(ctx0, cur);
|
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
|
|
cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
|
|
|
|
// residual 2
|
|
cur = ggml_add(ctx0, embeddings, cur);
|
|
|
|
embeddings = cur;
|
|
}
|
|
|
|
// post-layernorm
|
|
if (model.post_ln_w) {
|
|
embeddings = ggml_norm(ctx0, embeddings, eps);
|
|
ggml_set_name(embeddings, "post_ln");
|
|
|
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
|
|
}
|
|
|
|
if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
|
|
const int batch_size = 1;
|
|
const int mm_tokens_per_image = 256; // default value for gemma3
|
|
const int tokens_per_side = sqrt(mm_tokens_per_image);
|
|
const int patches_per_image = sqrt(num_patches);
|
|
const int kernel_size = patches_per_image / tokens_per_side;
|
|
|
|
embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
|
|
embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size);
|
|
|
|
// doing a pool2d to reduce the number of output tokens to 256
|
|
embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
|
|
embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size);
|
|
embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
|
|
|
|
// apply norm before projection
|
|
embeddings = ggml_rms_norm(ctx0, embeddings, eps);
|
|
embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w);
|
|
|
|
// apply projection
|
|
embeddings = ggml_mul_mat(ctx0,
|
|
ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
|
|
embeddings);
|
|
|
|
} else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
|
|
// https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
|
|
|
|
ggml_tensor * cur = embeddings;
|
|
const int scale_factor = model.hparams.proj_scale_factor;
|
|
const int n_embd = cur->ne[0];
|
|
const int seq = cur->ne[1];
|
|
const int bsz = 1; // batch size, always 1 for now since we don't support batching
|
|
const int height = std::sqrt(seq);
|
|
const int width = std::sqrt(seq);
|
|
GGML_ASSERT(scale_factor != 0);
|
|
cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
|
|
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
|
|
cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
|
|
n_embd * scale_factor * scale_factor,
|
|
height / scale_factor,
|
|
width / scale_factor,
|
|
bsz);
|
|
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
|
|
cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
|
|
n_embd * scale_factor * scale_factor,
|
|
seq / (scale_factor * scale_factor),
|
|
bsz);
|
|
|
|
cur = ggml_mul_mat(ctx0, model.projection, cur);
|
|
embeddings = cur;
|
|
} else {
|
|
GGML_ABORT("SigLIP: Unsupported projector type");
|
|
}
|
|
|
|
// build the graph
|
|
ggml_build_forward_expand(gf, embeddings);
|
|
|
|
return gf;
|
|
}
|
|
|
|
// implementation of the 2D RoPE without adding a new op in ggml
|
|
// this is not efficient (use double the memory), but works on all backends
|
|
// TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
|
|
static ggml_tensor * build_rope_2d(
|
|
ggml_context * ctx0,
|
|
ggml_tensor * cur,
|
|
ggml_tensor * pos_h,
|
|
ggml_tensor * pos_w,
|
|
const float freq_base
|
|
) {
|
|
const int64_t n_dim = cur->ne[0];
|
|
const int64_t n_head = cur->ne[1];
|
|
const int64_t n_pos = cur->ne[2];
|
|
|
|
// for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
|
|
// we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
|
|
// first half of cur will use 1e-0, 1e-2 (even)
|
|
// second half of cur will use 1e-1, 1e-3 (odd)
|
|
// the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
|
|
// ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
|
|
// then for the second half, we use freq_scale to shift the inv_freq
|
|
// ^ why? replace (2i) with (2i+1) in the above equation
|
|
const float freq_scale_odd = std::pow(freq_base, (float)-2/n_dim);
|
|
|
|
// first half
|
|
ggml_tensor * first;
|
|
{
|
|
first = ggml_view_3d(ctx0, cur,
|
|
n_dim/2, n_head, n_pos,
|
|
ggml_row_size(cur->type, n_dim),
|
|
ggml_row_size(cur->type, n_dim*n_head),
|
|
0);
|
|
first = ggml_rope_ext(
|
|
ctx0,
|
|
first,
|
|
pos_h, // positions
|
|
nullptr, // freq factors
|
|
n_dim/2, // n_dims
|
|
0, 0, freq_base,
|
|
1.0f, 0.0f, 1.0f, 0.0f, 0.0f
|
|
);
|
|
}
|
|
|
|
// second half
|
|
ggml_tensor * second;
|
|
{
|
|
second = ggml_view_3d(ctx0, cur,
|
|
n_dim/2, n_head, n_pos,
|
|
ggml_row_size(cur->type, n_dim),
|
|
ggml_row_size(cur->type, n_dim*n_head),
|
|
n_dim/2 * ggml_element_size(cur));
|
|
second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
|
|
second = ggml_rope_ext(
|
|
ctx0,
|
|
second,
|
|
pos_w, // positions
|
|
nullptr, // freq factors
|
|
n_dim/2, // n_dims
|
|
0, 0, freq_base,
|
|
freq_scale_odd,
|
|
0.0f, 1.0f, 0.0f, 0.0f
|
|
);
|
|
}
|
|
|
|
cur = ggml_concat(ctx0, first, second, 0);
|
|
return cur;
|
|
}
|
|
|
|
static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_image_f32 & img) {
|
|
const auto & model = ctx->vision_model;
|
|
const auto & hparams = model.hparams;
|
|
|
|
GGML_ASSERT(ctx->proj_type == PROJECTOR_TYPE_PIXTRAL);
|
|
|
|
int image_size_width = img.nx;
|
|
int image_size_height = img.ny;
|
|
|
|
const int patch_size = hparams.patch_size;
|
|
const int n_patches_x = image_size_width / patch_size;
|
|
const int n_patches_y = image_size_height / patch_size;
|
|
const int num_patches = n_patches_x * n_patches_y;
|
|
const int hidden_size = hparams.hidden_size;
|
|
const int n_head = hparams.n_head;
|
|
const int d_head = hidden_size / n_head;
|
|
const int n_layer = hparams.n_layer;
|
|
const float eps = hparams.eps;
|
|
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ ctx->buf_compute_meta.size(),
|
|
/*.mem_buffer =*/ ctx->buf_compute_meta.data(),
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
|
|
ggml_context_ptr ctx0_ptr(ggml_init(params));
|
|
auto ctx0 = ctx0_ptr.get();
|
|
|
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
|
|
|
// input raw
|
|
struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
|
|
ggml_set_name(inp_raw, "inp_raw");
|
|
ggml_set_input(inp_raw);
|
|
|
|
// 2D input positions
|
|
struct ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
|
|
ggml_set_name(pos_h, "pos_h");
|
|
ggml_set_input(pos_h);
|
|
struct ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
|
|
ggml_set_name(pos_w, "pos_w");
|
|
ggml_set_input(pos_w);
|
|
|
|
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
|
inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
|
|
inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
|
|
|
|
struct ggml_tensor * embeddings = inp;
|
|
|
|
// pre-layer norm
|
|
embeddings = ggml_mul(ctx0, ggml_rms_norm(ctx0, embeddings, eps), model.pre_ln_w);
|
|
|
|
// loop over layers
|
|
for (int il = 0; il < n_layer; il++) {
|
|
struct ggml_tensor * cur = embeddings;
|
|
|
|
// pre-attention norm
|
|
cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.layers[il].ln_1_w);
|
|
|
|
// self-attention
|
|
{
|
|
struct ggml_tensor * Q = ggml_mul_mat(ctx0, model.layers[il].q_w, cur);
|
|
|
|
Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
|
|
Q = build_rope_2d(ctx0, Q, pos_h, pos_w, hparams.rope_theta);
|
|
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
|
|
|
struct ggml_tensor * K = ggml_mul_mat(ctx0, model.layers[il].k_w, cur);
|
|
|
|
K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
|
|
K = build_rope_2d(ctx0, K, pos_h, pos_w, hparams.rope_theta);
|
|
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
|
|
|
|
struct ggml_tensor * V = ggml_mul_mat(ctx0, model.layers[il].v_w, cur);
|
|
|
|
V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
|
|
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
|
|
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
|
KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
|
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
|
|
KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
|
|
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
|
|
|
cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
|
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].o_w, cur);
|
|
}
|
|
|
|
// re-add the layer input, e.g., residual
|
|
cur = ggml_add(ctx0, cur, embeddings);
|
|
|
|
embeddings = cur; // embeddings = residual, cur = hidden_states
|
|
|
|
// pre-ffn norm
|
|
cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.layers[il].ln_2_w);
|
|
|
|
// feed-forward
|
|
{
|
|
ggml_tensor * gate_proj = ggml_mul_mat(ctx0, model.layers[il].ff_gate_w, cur);
|
|
ggml_tensor * up_proj = ggml_mul_mat(ctx0, model.layers[il].ff_up_w, cur);
|
|
gate_proj = ggml_silu(ctx0, gate_proj); // pixtral uses silu
|
|
cur = ggml_mul(ctx0, up_proj, gate_proj);
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ff_down_w, cur);
|
|
}
|
|
|
|
// residual 2
|
|
cur = ggml_add(ctx0, embeddings, cur);
|
|
|
|
embeddings = cur;
|
|
}
|
|
|
|
// LlavaMultiModalProjector (with GELU activation)
|
|
{
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
|
|
|
|
embeddings = ggml_gelu(ctx0, embeddings);
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
|
|
}
|
|
|
|
// arrangement of the [IMG_BREAK] token
|
|
{
|
|
// not efficient, but works
|
|
// the trick is to view the embeddings as a 3D tensor with shape [hidden_size, n_patches_per_row, n_rows]
|
|
// and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
|
|
// after the concatenation, we have a tensor with shape [hidden_size, n_patches_per_row + 1, n_rows]
|
|
|
|
const int n_embd_text = embeddings->ne[0];
|
|
const int n_tokens_output = num_patches + n_patches_y - 1; // one [IMG_BREAK] per row, except the last row
|
|
|
|
ggml_tensor * cur = ggml_reshape_3d(ctx0, embeddings, n_embd_text, n_patches_x, n_patches_y);
|
|
ggml_tensor * tok = ggml_new_tensor_3d(ctx0, embeddings->type, n_embd_text, 1, n_patches_y);
|
|
tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
|
|
tok = ggml_add(ctx0, tok, model.token_embd_img_break);
|
|
cur = ggml_concat(ctx0, cur, tok, 1);
|
|
embeddings = ggml_view_2d(ctx0, cur,
|
|
n_embd_text, n_tokens_output,
|
|
ggml_row_size(cur->type, n_embd_text), 0);
|
|
}
|
|
|
|
// build the graph
|
|
ggml_build_forward_expand(gf, embeddings);
|
|
|
|
return gf;
|
|
}
|
|
|
|
static ggml_cgraph * clip_image_build_graph_qwen25vl(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
|
|
const auto & model = ctx->vision_model;
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int image_size_width = imgs.entries[0]->nx;
|
|
const int image_size_height = imgs.entries[0]->ny;
|
|
|
|
const bool use_window_attn = hparams.n_wa_pattern > 0;
|
|
|
|
const int n_wa_pattern = hparams.n_wa_pattern;
|
|
const int patch_size = hparams.patch_size;
|
|
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
|
const int patches_w = image_size_width / patch_size;
|
|
const int patches_h = image_size_height / patch_size;
|
|
const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
|
|
const int num_position_ids = num_positions * 4; // m-rope requires 4 dim per position
|
|
const int hidden_size = hparams.hidden_size;
|
|
const int n_head = hparams.n_head;
|
|
const int d_head = hidden_size / n_head;
|
|
const int n_layer = hparams.n_layer;
|
|
const float eps = hparams.eps;
|
|
|
|
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
|
|
|
|
const int batch_size = imgs.entries.size();
|
|
GGML_ASSERT(batch_size == 1);
|
|
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ ctx->buf_compute_meta.size(),
|
|
/*.mem_buffer =*/ ctx->buf_compute_meta.data(),
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
|
|
ggml_context_ptr ctx0_ptr(ggml_init(params));
|
|
auto ctx0 = ctx0_ptr.get();
|
|
|
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
|
|
|
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
|
|
ggml_set_name(inp_raw, "inp_raw");
|
|
ggml_set_input(inp_raw);
|
|
|
|
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
|
|
|
GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
|
|
GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
|
|
|
|
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
|
inp = ggml_add(ctx0, inp, inp_1);
|
|
|
|
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
|
|
inp = ggml_reshape_4d(
|
|
ctx0, inp,
|
|
hidden_size * 2, patches_w / 2, patches_h, batch_size);
|
|
inp = ggml_reshape_4d(
|
|
ctx0, inp,
|
|
hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
|
|
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
|
|
inp = ggml_reshape_3d(
|
|
ctx0, inp,
|
|
hidden_size, patches_w * patches_h, batch_size);
|
|
|
|
if (model.patch_bias) {
|
|
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
|
|
inp = ggml_add(ctx0, inp, model.patch_bias);
|
|
}
|
|
struct ggml_tensor * embeddings = inp;
|
|
struct ggml_tensor * window_mask = nullptr;
|
|
struct ggml_tensor * window_idx = nullptr;
|
|
struct ggml_tensor * inv_window_idx = nullptr;
|
|
|
|
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
|
|
ggml_set_name(positions, "positions");
|
|
ggml_set_input(positions);
|
|
|
|
// pre-layernorm
|
|
if (model.pre_ln_w) {
|
|
embeddings = ggml_rms_norm(ctx0, embeddings, eps);
|
|
ggml_set_name(embeddings, "pre_ln");
|
|
|
|
embeddings = ggml_mul(ctx0, embeddings, model.pre_ln_w);
|
|
}
|
|
|
|
if (use_window_attn) {
|
|
// handle window attention inputs
|
|
inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4);
|
|
ggml_set_name(inv_window_idx, "inv_window_idx");
|
|
ggml_set_input(inv_window_idx);
|
|
// mask for window attention
|
|
window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, num_positions, num_positions);
|
|
ggml_set_name(window_mask, "window_mask");
|
|
ggml_set_input(window_mask);
|
|
|
|
// embeddings shape: [hidden_size, patches_w * patches_h, batch_size]
|
|
GGML_ASSERT(batch_size == 1);
|
|
embeddings = ggml_reshape_2d(ctx0, embeddings, hidden_size * 4, patches_w * patches_h * batch_size / 4);
|
|
embeddings = ggml_get_rows(ctx0, embeddings, inv_window_idx);
|
|
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, patches_w * patches_h, batch_size);
|
|
}
|
|
|
|
// loop over layers
|
|
for (int il = 0; il < n_layer; il++) {
|
|
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
|
|
|
|
// rmsnorm1
|
|
cur = ggml_rms_norm(ctx0, cur, eps);
|
|
cur = ggml_mul(ctx0, cur, model.layers[il].ln_1_w);
|
|
|
|
// self-attention
|
|
{
|
|
|
|
struct ggml_tensor * Q =
|
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
|
|
|
|
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
|
|
Q = ggml_rope_multi(
|
|
ctx0, Q, positions, nullptr,
|
|
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
|
|
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
|
Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
|
|
|
|
struct ggml_tensor * K =
|
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
|
|
|
|
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
|
|
K = ggml_rope_multi(
|
|
ctx0, K, positions, nullptr,
|
|
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
|
|
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
|
|
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
|
|
|
|
struct ggml_tensor * V =
|
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
|
|
|
|
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
|
|
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
|
|
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
|
|
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
|
const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
|
|
if (full_attn) {
|
|
KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
|
|
} else {
|
|
KQ = ggml_soft_max_ext(ctx0, KQ, window_mask, 1.0f / sqrtf((float)d_head), 0.0f);
|
|
}
|
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
|
|
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
|
|
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
|
|
|
cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
|
|
}
|
|
|
|
// attention output
|
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
|
|
|
|
// re-add the layer input, e.g., residual
|
|
cur = ggml_add(ctx0, cur, embeddings);
|
|
|
|
embeddings = cur; // embeddings = residual, cur = hidden_states
|
|
|
|
// rms norm2
|
|
cur = ggml_rms_norm(ctx0, cur, eps);
|
|
cur = ggml_mul(ctx0, cur, model.layers[il].ln_2_w);
|
|
|
|
// mlp
|
|
// ffn_up
|
|
auto cur_up = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
|
|
cur_up = ggml_add(ctx0, cur_up, model.layers[il].ff_o_b);
|
|
|
|
auto cur_gate = ggml_mul_mat(ctx0, model.layers[il].ff_g_w, cur);
|
|
cur_gate = ggml_add(ctx0, cur_gate, model.layers[il].ff_g_b);
|
|
// TODO : only 2 of these 3 are actually used, should we remove one of them?
|
|
if (ctx->use_gelu) {
|
|
cur_gate = ggml_gelu_inplace(ctx0, cur_gate);
|
|
} else if (ctx->use_silu) {
|
|
cur_gate = ggml_silu_inplace(ctx0, cur_gate);
|
|
} else {
|
|
cur_gate = ggml_gelu_quick_inplace(ctx0, cur_gate);
|
|
}
|
|
cur = ggml_mul(ctx0, cur_gate, cur_up);
|
|
|
|
// ffn_down
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
|
|
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
|
|
|
|
// residual 2
|
|
cur = ggml_add(ctx0, embeddings, cur);
|
|
|
|
embeddings = cur;
|
|
}
|
|
|
|
// post-layernorm
|
|
if (model.post_ln_w) {
|
|
embeddings = ggml_rms_norm(ctx0, embeddings, eps);
|
|
ggml_set_name(embeddings, "post_ln");
|
|
|
|
embeddings = ggml_mul(ctx0, embeddings, model.post_ln_w);
|
|
}
|
|
|
|
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
|
|
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
|
|
|
|
// GELU activation
|
|
embeddings = ggml_gelu(ctx0, embeddings);
|
|
|
|
// Second linear layer
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
|
|
|
|
if (use_window_attn) {
|
|
window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4);
|
|
ggml_set_name(window_idx, "window_idx");
|
|
ggml_set_input(window_idx);
|
|
|
|
// embeddings shape: [hidden_size, patches_w * patches_h, batch_size]
|
|
GGML_ASSERT(batch_size == 1);
|
|
embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4);
|
|
embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
|
|
embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4, batch_size);
|
|
}
|
|
|
|
// build the graph
|
|
ggml_build_forward_expand(gf, embeddings);
|
|
|
|
return gf;
|
|
}
|
|
|
|
static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
|
|
const auto & model = ctx->vision_model;
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int image_size = hparams.image_size;
|
|
int image_size_width = image_size;
|
|
int image_size_height = image_size;
|
|
|
|
if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
|
|
LOG_DBG("%s: %d %d\n", __func__, load_image_size.width, load_image_size.height);
|
|
image_size_width = load_image_size.width;
|
|
image_size_height = load_image_size.height;
|
|
if (is_inf) {
|
|
image_size_width = imgs.entries[0]->nx;
|
|
image_size_height = imgs.entries[0]->ny;
|
|
}
|
|
}
|
|
|
|
else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
|
|
// use the image's native resolution when image is avaible
|
|
if (is_inf) {
|
|
// if (imgs->data->nx && imgs->data->ny) {
|
|
image_size_width = imgs.entries[0]->nx;
|
|
image_size_height = imgs.entries[0]->ny;
|
|
}
|
|
}
|
|
|
|
const int patch_size = hparams.patch_size;
|
|
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
|
const int patches_w = image_size_width / patch_size;
|
|
const int patches_h = image_size_height / patch_size;
|
|
const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
|
|
const int num_position_ids = ctx->proj_type == PROJECTOR_TYPE_QWEN2VL ? num_positions * 4 : num_positions;
|
|
const int hidden_size = hparams.hidden_size;
|
|
const int n_head = hparams.n_head;
|
|
const int d_head = hidden_size / n_head;
|
|
const float eps = hparams.eps;
|
|
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
|
|
|
|
const int batch_size = imgs.entries.size();
|
|
|
|
if (ctx->has_llava_projector
|
|
|| ctx->proj_type == PROJECTOR_TYPE_MINICPMV
|
|
|| ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
|
|
GGML_ASSERT(batch_size == 1);
|
|
}
|
|
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ ctx->buf_compute_meta.size(),
|
|
/*.mem_buffer =*/ ctx->buf_compute_meta.data(),
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
|
|
ggml_context_ptr ctx0_ptr(ggml_init(params));
|
|
auto ctx0 = ctx0_ptr.get();
|
|
|
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
|
|
|
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
|
|
ggml_set_name(inp_raw, "inp_raw");
|
|
ggml_set_input(inp_raw);
|
|
|
|
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
|
|
|
if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
|
|
GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
|
|
GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
|
|
|
|
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
|
inp = ggml_add(ctx0, inp, inp_1);
|
|
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
|
|
inp = ggml_reshape_4d(
|
|
ctx0, inp,
|
|
hidden_size * 2, patches_w / 2, patches_h, batch_size);
|
|
inp = ggml_reshape_4d(
|
|
ctx0, inp,
|
|
hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
|
|
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
|
|
inp = ggml_reshape_3d(
|
|
ctx0, inp,
|
|
hidden_size, patches_w * patches_h, batch_size);
|
|
}
|
|
else {
|
|
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
|
|
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
|
|
}
|
|
|
|
if (model.patch_bias) {
|
|
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
|
|
inp = ggml_add(ctx0, inp, model.patch_bias);
|
|
}
|
|
struct ggml_tensor * embeddings = inp;
|
|
struct ggml_tensor * pos_embed = nullptr;
|
|
|
|
// concat class_embeddings and patch_embeddings
|
|
if (model.class_embedding) {
|
|
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
|
|
embeddings = ggml_scale(ctx0, embeddings, 0.0f); // set to all zeros
|
|
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
|
|
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
|
|
embeddings = ggml_acc(ctx0, embeddings, inp,
|
|
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
|
}
|
|
|
|
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
|
|
ggml_set_name(positions, "positions");
|
|
ggml_set_input(positions);
|
|
|
|
if (ctx->proj_type != PROJECTOR_TYPE_QWEN2VL) { // qwen2vl does NOT use learned position embeddings
|
|
embeddings =
|
|
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
|
|
}
|
|
|
|
if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
|
|
int pos_w = image_size_width/patch_size;
|
|
int pos_h = image_size_height/patch_size;
|
|
int n_output_dim = clip_n_mmproj_embd(ctx);
|
|
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, pos_w * pos_h, 1);
|
|
ggml_set_name(pos_embed, "pos_embed");
|
|
ggml_set_input(pos_embed);
|
|
}
|
|
|
|
// pre-layernorm
|
|
if (model.pre_ln_w) {
|
|
embeddings = ggml_norm(ctx0, embeddings, eps);
|
|
ggml_set_name(embeddings, "pre_ln");
|
|
|
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
|
|
}
|
|
|
|
std::vector<struct ggml_tensor *> embedding_stack;
|
|
const auto & vision_feature_layer = hparams.vision_feature_layer;
|
|
|
|
// loop over layers
|
|
for (int il = 0; il < ctx->max_feature_layer; il++) {
|
|
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
|
|
|
|
// If this is an embedding feature layer, save the output.
|
|
// NOTE: 0 index here refers to the input to the encoder.
|
|
if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
|
|
embedding_stack.push_back(embeddings);
|
|
}
|
|
|
|
//const size_t nb_q_w = model.layers[il].q_w->nb[0];
|
|
|
|
// layernorm1
|
|
{
|
|
cur = ggml_norm(ctx0, cur, eps);
|
|
|
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
|
|
model.layers[il].ln_1_b);
|
|
}
|
|
|
|
// self-attention
|
|
{
|
|
|
|
struct ggml_tensor * Q =
|
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
|
|
|
|
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
|
|
if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
|
|
Q = ggml_rope_multi(
|
|
ctx0, Q, positions, nullptr,
|
|
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
|
|
}
|
|
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
|
Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
|
|
|
|
struct ggml_tensor * K =
|
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
|
|
|
|
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
|
|
if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
|
|
K = ggml_rope_multi(
|
|
ctx0, K, positions, nullptr,
|
|
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
|
|
}
|
|
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
|
|
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
|
|
|
|
struct ggml_tensor * V =
|
|
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
|
|
|
|
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
|
|
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
|
|
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
|
|
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
|
KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
|
|
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
|
|
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
|
|
|
cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
|
|
}
|
|
|
|
// attention output
|
|
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
|
|
|
|
// re-add the layer input, e.g., residual
|
|
cur = ggml_add(ctx0, cur, embeddings);
|
|
|
|
embeddings = cur; // embeddings = residual, cur = hidden_states
|
|
|
|
// layernorm2
|
|
{
|
|
cur = ggml_norm(ctx0, cur, eps);
|
|
|
|
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
|
|
}
|
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
|
|
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
|
|
|
|
if (ctx->use_gelu) {
|
|
cur = ggml_gelu_inplace(ctx0, cur);
|
|
} else if (ctx->use_silu) {
|
|
cur = ggml_silu_inplace(ctx0, cur);
|
|
} else {
|
|
cur = ggml_gelu_quick_inplace(ctx0, cur);
|
|
}
|
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
|
|
cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
|
|
|
|
// residual 2
|
|
cur = ggml_add(ctx0, embeddings, cur);
|
|
|
|
embeddings = cur;
|
|
}
|
|
|
|
// post-layernorm
|
|
if (model.post_ln_w) {
|
|
embeddings = ggml_norm(ctx0, embeddings, eps);
|
|
ggml_set_name(embeddings, "post_ln");
|
|
|
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
|
|
}
|
|
|
|
// final layer is a vision feature layer
|
|
if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
|
|
embedding_stack.push_back(embeddings);
|
|
}
|
|
|
|
// If feature layers are explicitly set, stack them (if we have multiple)
|
|
if (!embedding_stack.empty()) {
|
|
embeddings = embedding_stack[0];
|
|
for (size_t i = 1; i < embedding_stack.size(); i++) {
|
|
embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
|
|
}
|
|
}
|
|
|
|
// llava projector
|
|
if (ctx->has_llava_projector) {
|
|
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
|
|
|
|
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
|
|
ggml_set_name(patches, "patches");
|
|
ggml_set_input(patches);
|
|
|
|
// shape [1, 576, 1024]
|
|
// ne is whcn, ne = [1024, 576, 1, 1]
|
|
embeddings = ggml_get_rows(ctx0, embeddings, patches);
|
|
|
|
// print_tensor_info(embeddings, "embeddings");
|
|
|
|
// llava projector
|
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
|
|
|
|
embeddings = ggml_gelu(ctx0, embeddings);
|
|
if (model.mm_2_w) {
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
|
|
}
|
|
}
|
|
else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
|
|
// ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
|
|
// First LayerNorm
|
|
embeddings = ggml_norm(ctx0, embeddings, eps);
|
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
|
|
model.mm_1_b);
|
|
|
|
// GELU activation
|
|
embeddings = ggml_gelu(ctx0, embeddings);
|
|
|
|
// Second linear layer
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
|
|
|
|
// Second LayerNorm
|
|
embeddings = ggml_norm(ctx0, embeddings, eps);
|
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
|
|
model.mm_4_b);
|
|
}
|
|
else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
|
|
// MobileVLM projector
|
|
int n_patch = 24;
|
|
struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
|
|
mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
|
|
mlp_1 = ggml_gelu(ctx0, mlp_1);
|
|
struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
|
|
mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
|
|
// mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
|
|
|
|
// block 1
|
|
struct ggml_tensor * block_1 = nullptr;
|
|
{
|
|
// transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
|
|
mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
|
|
mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
|
|
// stride = 1, padding = 1, bias is nullptr
|
|
block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
|
|
|
|
// layer norm
|
|
// // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
|
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
|
|
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
|
|
block_1 = ggml_norm(ctx0, block_1, eps);
|
|
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
|
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
|
|
|
|
// block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
|
|
// hardswish
|
|
struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
|
|
|
|
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
|
|
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
|
|
// pointwise conv
|
|
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
|
|
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
|
|
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
|
|
block_1 = ggml_relu(ctx0, block_1);
|
|
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
|
|
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
|
|
block_1 = ggml_hardsigmoid(ctx0, block_1);
|
|
// block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
|
|
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
|
|
block_1 = ggml_mul(ctx0, block_1_hw, block_1);
|
|
|
|
int w = block_1->ne[0], h = block_1->ne[1];
|
|
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
|
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
|
|
|
|
// block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
|
|
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
|
|
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
|
|
|
|
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
|
|
block_1 = ggml_norm(ctx0, block_1, eps);
|
|
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
|
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
|
|
// block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
|
|
// residual
|
|
block_1 = ggml_add(ctx0, mlp_3, block_1);
|
|
}
|
|
|
|
// block_2
|
|
{
|
|
// stride = 2
|
|
block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
|
|
|
|
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
|
|
// layer norm
|
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
|
|
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
|
|
block_1 = ggml_norm(ctx0, block_1, eps);
|
|
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
|
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
|
|
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
|
|
// hardswish
|
|
struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
|
|
|
|
// not sure the parameters is right for globalAvgPooling
|
|
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
|
|
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
|
|
// pointwise conv
|
|
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
|
|
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
|
|
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
|
|
block_1 = ggml_relu(ctx0, block_1);
|
|
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
|
|
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
|
|
block_1 = ggml_hardsigmoid(ctx0, block_1);
|
|
|
|
// block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
|
|
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
|
|
block_1 = ggml_mul(ctx0, block_1_hw, block_1);
|
|
|
|
int w = block_1->ne[0], h = block_1->ne[1];
|
|
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
|
|
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
|
|
// block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
|
|
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
|
|
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
|
|
|
|
|
|
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
|
|
block_1 = ggml_norm(ctx0, block_1, eps);
|
|
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
|
|
block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
|
|
// block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
|
|
}
|
|
embeddings = block_1;
|
|
}
|
|
else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
|
|
{
|
|
int n_patch = 24;
|
|
struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
|
|
mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
|
|
mlp_0 = ggml_gelu(ctx0, mlp_0);
|
|
struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
|
|
mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
|
|
// mlp_2 ne = [2048, 576, 1, 1]
|
|
// // AVG Pool Layer 2*2, strides = 2
|
|
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
|
|
// mlp_2 ne = [576, 2048, 1, 1]
|
|
mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
|
|
// mlp_2 ne [24, 24, 2048, 1]
|
|
mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
|
|
// weight ne = [3, 3, 2048, 1]
|
|
struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
|
|
peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
|
|
peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
|
|
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
|
|
peg_0 = ggml_add(ctx0, peg_0, mlp_2);
|
|
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
|
|
embeddings = peg_0;
|
|
}
|
|
else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
}
|
|
// minicpmv projector
|
|
else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
|
|
struct ggml_tensor * q = model.mm_model_query;
|
|
{ // layernorm
|
|
q = ggml_norm(ctx0, q, eps);
|
|
q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
|
|
}
|
|
struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
|
|
{ // layernorm
|
|
v = ggml_norm(ctx0, v, eps);
|
|
v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
|
|
}
|
|
struct ggml_tensor * k;
|
|
{ // position
|
|
// q = ggml_add(ctx0, q, model.mm_model_pos_embed);
|
|
k = ggml_add(ctx0, v, pos_embed);
|
|
}
|
|
|
|
{ // attention
|
|
int hidden_size = clip_n_mmproj_embd(ctx);
|
|
const int d_head = 128;
|
|
int n_head = hidden_size/d_head;
|
|
int num_query = 96;
|
|
if (ctx->minicpmv_version == 2) {
|
|
num_query = 96;
|
|
}
|
|
else if (ctx->minicpmv_version == 3) {
|
|
num_query = 64;
|
|
}
|
|
else if (ctx->minicpmv_version == 4) {
|
|
num_query = 64;
|
|
}
|
|
|
|
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
|
|
struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
|
|
struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
|
|
// permute
|
|
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
|
|
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
|
|
Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
|
|
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
|
|
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
|
|
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
|
|
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
|
|
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
|
|
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
|
KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
|
|
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
|
|
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
|
KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
|
|
|
|
embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
|
|
}
|
|
{ // layernorm
|
|
embeddings = ggml_norm(ctx0, embeddings, eps);
|
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
|
|
}
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
|
|
}
|
|
|
|
// glm projector
|
|
else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
|
|
size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
|
|
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
|
|
embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
|
|
embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
|
|
embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
|
|
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
|
|
// GLU
|
|
{
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
|
|
embeddings = ggml_norm(ctx0, embeddings, eps);
|
|
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
|
|
embeddings = ggml_gelu_inplace(ctx0, embeddings);
|
|
struct ggml_tensor * x = embeddings;
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
|
|
x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
|
|
embeddings = ggml_silu_inplace(ctx0, embeddings);
|
|
embeddings = ggml_mul(ctx0, embeddings,x);
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
|
|
}
|
|
}
|
|
|
|
else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
|
|
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
|
|
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
|
|
|
|
// GELU activation
|
|
embeddings = ggml_gelu(ctx0, embeddings);
|
|
|
|
// Second linear layer
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
|
|
}
|
|
|
|
// build the graph
|
|
ggml_build_forward_expand(gf, embeddings);
|
|
|
|
return gf;
|
|
}
|
|
|
|
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
|
|
ggml_cgraph * res;
|
|
switch (ctx->proj_type) {
|
|
case PROJECTOR_TYPE_GEMMA3:
|
|
case PROJECTOR_TYPE_IDEFICS3:
|
|
{
|
|
GGML_ASSERT(imgs.entries.size() == 1);
|
|
res = clip_image_build_graph_siglip(ctx, *imgs.entries[0]);
|
|
} break;
|
|
case PROJECTOR_TYPE_PIXTRAL:
|
|
{
|
|
GGML_ASSERT(imgs.entries.size() == 1);
|
|
res = clip_image_build_graph_pixtral(ctx, *imgs.entries[0]);
|
|
} break;
|
|
case PROJECTOR_TYPE_QWEN25VL:
|
|
{
|
|
res = clip_image_build_graph_qwen25vl(ctx, imgs);
|
|
} break;
|
|
default:
|
|
{
|
|
// TODO: we should have one build_* function per model
|
|
res = clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf);
|
|
} break;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
struct clip_model_loader {
|
|
ggml_context_ptr ctx_meta;
|
|
gguf_context_ptr ctx_gguf;
|
|
|
|
clip_ctx & ctx_clip;
|
|
std::string fname;
|
|
|
|
size_t model_size = 0; // in bytes
|
|
|
|
// TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model
|
|
clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) {
|
|
struct ggml_context * meta = nullptr;
|
|
|
|
struct gguf_init_params params = {
|
|
/*.no_alloc = */ true,
|
|
/*.ctx = */ &meta,
|
|
};
|
|
|
|
ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
|
|
if (!ctx_gguf.get()) {
|
|
throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
|
|
}
|
|
|
|
ctx_meta.reset(meta);
|
|
|
|
const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
|
|
|
|
// print gguf info
|
|
{
|
|
std::string name;
|
|
get_string(KEY_NAME, name, false);
|
|
std::string description;
|
|
get_string(KEY_DESCRIPTION, description, false);
|
|
LOG_INF("%s: model name: %s\n", __func__, name.c_str());
|
|
LOG_INF("%s: description: %s\n", __func__, description.c_str());
|
|
LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
|
|
LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
|
|
LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
|
|
LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
|
|
LOG_INF("\n");
|
|
}
|
|
|
|
// tensors
|
|
{
|
|
for (int i = 0; i < n_tensors; ++i) {
|
|
const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
|
|
const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
|
|
enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
|
|
struct ggml_tensor * cur = ggml_get_tensor(meta, name);
|
|
size_t tensor_size = ggml_nbytes(cur);
|
|
model_size += tensor_size;
|
|
LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
|
|
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
|
|
}
|
|
}
|
|
}
|
|
|
|
void load_hparams() {
|
|
auto & hparams = ctx_clip.vision_model.hparams;
|
|
|
|
// projector type
|
|
std::string proj_type;
|
|
{
|
|
get_string(KEY_PROJ_TYPE, proj_type, false);
|
|
if (!proj_type.empty()) {
|
|
ctx_clip.proj_type = clip_projector_type_from_string(proj_type);
|
|
}
|
|
if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) {
|
|
throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
|
|
}
|
|
}
|
|
|
|
// other hparams
|
|
{
|
|
get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false);
|
|
|
|
get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false);
|
|
get_bool(KEY_USE_SILU, ctx_clip.use_silu, false);
|
|
|
|
get_u32(KEY_N_EMBD, hparams.hidden_size);
|
|
get_u32(KEY_N_HEAD, hparams.n_head);
|
|
get_u32(KEY_N_FF, hparams.n_intermediate);
|
|
get_u32(KEY_N_BLOCK, hparams.n_layer);
|
|
get_u32(KEY_PROJ_DIM, hparams.projection_dim);
|
|
get_f32(KEY_LAYER_NORM_EPS, hparams.eps);
|
|
get_u32(KEY_IMAGE_SIZE, hparams.image_size);
|
|
get_u32(KEY_PATCH_SIZE, hparams.patch_size);
|
|
get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
|
|
get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
|
|
|
|
ctx_clip.has_llava_projector = ctx_clip.proj_type == PROJECTOR_TYPE_MLP
|
|
|| ctx_clip.proj_type == PROJECTOR_TYPE_MLP_NORM
|
|
|| ctx_clip.proj_type == PROJECTOR_TYPE_LDP
|
|
|| ctx_clip.proj_type == PROJECTOR_TYPE_LDPV2;
|
|
|
|
{
|
|
std::string mm_patch_merge_type;
|
|
get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
|
|
if (mm_patch_merge_type == "spatial_unpad") {
|
|
hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
|
|
}
|
|
}
|
|
|
|
{
|
|
int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
|
|
int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
|
|
GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
|
|
GGML_ASSERT(idx_std >= 0 && "image_std not found");
|
|
const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
|
|
const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
|
|
for (int i = 0; i < 3; ++i) {
|
|
ctx_clip.image_mean[i] = mean_data[i];
|
|
ctx_clip.image_std[i] = std_data[i];
|
|
}
|
|
}
|
|
|
|
// Load the vision feature layer indices if they are explicitly provided;
|
|
// if multiple vision feature layers are present, the values will be concatenated
|
|
// to form the final visual features.
|
|
// NOTE: gguf conversions should standardize the values of the vision feature layer to
|
|
// be non-negative, since we use -1 to mark values as unset here.
|
|
std::vector<int> vision_feature_layer;
|
|
get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
|
|
// convert std::vector to std::unordered_set
|
|
for (auto & layer : vision_feature_layer) {
|
|
hparams.vision_feature_layer.insert(layer);
|
|
}
|
|
|
|
// Calculate the deepest feature layer based on hparams and projector type
|
|
// NOTE: This is only used by build_graph_legacy()
|
|
{
|
|
// Get the index of the second to last layer; this is the default for models that have a llava projector
|
|
int n_layer = hparams.n_layer - 1;
|
|
int deepest_feature_layer = -1;
|
|
|
|
if (ctx_clip.proj_type == PROJECTOR_TYPE_MINICPMV
|
|
|| ctx_clip.proj_type == PROJECTOR_TYPE_GLM_EDGE
|
|
|| ctx_clip.proj_type == PROJECTOR_TYPE_QWEN2VL
|
|
|| ctx_clip.proj_type == PROJECTOR_TYPE_QWEN25VL) {
|
|
n_layer += 1;
|
|
}
|
|
|
|
// If we set explicit vision feature layers, only go up to the deepest one
|
|
// NOTE: only used by granite-vision models for now
|
|
for (const auto & feature_layer : hparams.vision_feature_layer) {
|
|
if (feature_layer > deepest_feature_layer) {
|
|
deepest_feature_layer = feature_layer;
|
|
}
|
|
}
|
|
ctx_clip.max_feature_layer = deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
|
|
}
|
|
|
|
// model-specific params
|
|
switch (ctx_clip.proj_type) {
|
|
case PROJECTOR_TYPE_MINICPMV:
|
|
{
|
|
if (ctx_clip.minicpmv_version == 0) {
|
|
ctx_clip.minicpmv_version = 2; // default to 2 if not set
|
|
}
|
|
} break;
|
|
case PROJECTOR_TYPE_IDEFICS3:
|
|
{
|
|
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
|
|
} break;
|
|
case PROJECTOR_TYPE_PIXTRAL:
|
|
{
|
|
hparams.rope_theta = 10000.0f;
|
|
} break;
|
|
case PROJECTOR_TYPE_QWEN25VL:
|
|
{
|
|
get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
|
|
LOG_INF("%s: has_llava_proj: %d\n", __func__, ctx_clip.has_llava_projector);
|
|
LOG_INF("%s: minicpmv_version: %d\n", __func__, ctx_clip.minicpmv_version);
|
|
LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
|
|
LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
|
|
LOG_INF("%s: use_silu: %d\n", __func__, ctx_clip.use_silu);
|
|
LOG_INF("%s: use_gelu: %d\n", __func__, ctx_clip.use_gelu);
|
|
LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
|
|
LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
|
|
}
|
|
}
|
|
|
|
void load_tensors() {
|
|
std::map<std::string, size_t> tensor_offset;
|
|
std::vector<ggml_tensor *> tensors_to_load;
|
|
|
|
// get offsets
|
|
for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
|
|
const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
|
|
tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
|
|
}
|
|
|
|
// create data context
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
|
|
/*.mem_buffer =*/ NULL,
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
ctx_clip.ctx_data.reset(ggml_init(params));
|
|
if (!ctx_clip.ctx_data) {
|
|
throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
|
|
}
|
|
|
|
// helper function
|
|
auto get_tensor = [&](const std::string & name, bool required = true) {
|
|
struct ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
|
|
if (!cur && required) {
|
|
throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
|
|
}
|
|
if (cur) {
|
|
tensors_to_load.push_back(cur);
|
|
// add tensors to context
|
|
struct ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
|
|
ggml_set_name(data_tensor, cur->name);
|
|
cur = data_tensor;
|
|
}
|
|
return cur;
|
|
};
|
|
|
|
auto & vision_model = ctx_clip.vision_model;
|
|
|
|
vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
|
|
|
|
vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, "v", "weight"), false);
|
|
vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, "v", "bias"), false);
|
|
|
|
vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, "v", "weight"), false);
|
|
vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, "v", "bias"), false);
|
|
|
|
vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
|
|
vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
|
|
vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
|
|
|
|
vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false);
|
|
|
|
// layers
|
|
vision_model.layers.resize(vision_model.hparams.n_layer);
|
|
for (int il = 0; il < vision_model.hparams.n_layer; ++il) {
|
|
auto & layer = vision_model.layers[il];
|
|
layer.k_w = get_tensor(string_format(TN_ATTN_K, "v", il, "weight"));
|
|
layer.q_w = get_tensor(string_format(TN_ATTN_Q, "v", il, "weight"));
|
|
layer.v_w = get_tensor(string_format(TN_ATTN_V, "v", il, "weight"));
|
|
layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight"));
|
|
layer.ln_1_w = get_tensor(string_format(TN_LN_1, "v", il, "weight"), false);
|
|
layer.ln_2_w = get_tensor(string_format(TN_LN_2, "v", il, "weight"), false);
|
|
layer.k_b = get_tensor(string_format(TN_ATTN_K, "v", il, "bias"), false);
|
|
layer.q_b = get_tensor(string_format(TN_ATTN_Q, "v", il, "bias"), false);
|
|
layer.v_b = get_tensor(string_format(TN_ATTN_V, "v", il, "bias"), false);
|
|
layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "bias"), false);
|
|
layer.ln_1_b = get_tensor(string_format(TN_LN_1, "v", il, "bias"), false);
|
|
layer.ln_2_b = get_tensor(string_format(TN_LN_2, "v", il, "bias"), false);
|
|
|
|
// new naming
|
|
layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, "v", il, "weight"));
|
|
layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, "v", il, "bias"), false);
|
|
layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, "v", il, "weight"), false);
|
|
layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, "v", il, "bias"), false);
|
|
layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, "v", il, "weight"));
|
|
layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, "v", il, "bias"), false);
|
|
|
|
// legacy naming (the in and out is reversed! don't ask me why)
|
|
layer.ff_i_w = layer.ff_down_w;
|
|
layer.ff_o_w = layer.ff_up_w;
|
|
layer.ff_g_w = layer.ff_gate_w;
|
|
layer.ff_i_b = layer.ff_down_b;
|
|
layer.ff_o_b = layer.ff_up_b;
|
|
layer.ff_g_b = layer.ff_gate_b;
|
|
}
|
|
|
|
switch (ctx_clip.proj_type) {
|
|
case PROJECTOR_TYPE_MLP:
|
|
case PROJECTOR_TYPE_MLP_NORM:
|
|
{
|
|
// LLaVA projection
|
|
vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
|
|
vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
|
|
// Yi-type llava
|
|
vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
|
|
vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
|
|
// missing in Yi-type llava
|
|
vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
|
|
vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
|
|
// Yi-type llava
|
|
vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
|
|
vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
|
|
vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
|
|
vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
|
|
if (vision_model.mm_3_w) {
|
|
// TODO: this is a hack to support Yi-type llava
|
|
ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM;
|
|
}
|
|
vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
|
|
} break;
|
|
case PROJECTOR_TYPE_LDP:
|
|
{
|
|
// MobileVLM projection
|
|
vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
|
|
vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
|
|
vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
|
|
vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
|
|
vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
|
|
vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
|
|
vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
|
|
vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
|
|
vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
|
|
vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
|
|
vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
|
|
vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
|
|
vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
|
|
vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
|
|
vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
|
|
vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
|
|
vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
|
|
vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
|
|
vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
|
|
vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
|
|
vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
|
|
vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
|
|
vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
|
|
vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
|
|
} break;
|
|
case PROJECTOR_TYPE_LDPV2:
|
|
{
|
|
// MobilVLM_V2 projection
|
|
vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
|
|
vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
|
|
vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
|
|
vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
|
|
vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
|
|
vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
|
|
} break;
|
|
case PROJECTOR_TYPE_MINICPMV:
|
|
{
|
|
// vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
|
|
vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
|
|
vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
|
|
vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
|
|
vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
|
|
vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
|
|
vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
|
|
vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
|
|
vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
|
|
vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
|
|
vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
|
|
vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
|
|
vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
|
|
vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
|
|
vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
|
|
vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
|
|
vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
|
|
vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
|
|
vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
|
|
} break;
|
|
case PROJECTOR_TYPE_GLM_EDGE:
|
|
{
|
|
vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
|
|
vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
|
|
vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR,"weight"));
|
|
vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"weight"));
|
|
vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"bias"));
|
|
vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
|
|
vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE,"weight"));
|
|
vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
|
|
} break;
|
|
case PROJECTOR_TYPE_QWEN2VL:
|
|
case PROJECTOR_TYPE_QWEN25VL:
|
|
{
|
|
vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
|
|
vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
|
|
vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
|
|
vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
|
|
} break;
|
|
case PROJECTOR_TYPE_GEMMA3:
|
|
{
|
|
vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
|
|
vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
|
|
} break;
|
|
case PROJECTOR_TYPE_IDEFICS3:
|
|
{
|
|
vision_model.projection = get_tensor(TN_MM_PROJECTOR);
|
|
} break;
|
|
case PROJECTOR_TYPE_PIXTRAL:
|
|
{
|
|
vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
|
|
vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
|
|
vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
|
|
vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
|
|
// [IMG_BREAK] token embedding
|
|
vision_model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
|
|
} break;
|
|
default:
|
|
GGML_ASSERT(false && "unknown projector type");
|
|
}
|
|
|
|
// load data
|
|
{
|
|
std::vector<uint8_t> read_buf;
|
|
|
|
#ifdef _WIN32
|
|
int wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, NULL, 0);
|
|
if (!wlen) {
|
|
throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
|
|
}
|
|
wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
|
|
wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, wbuf, wlen);
|
|
if (!wlen) {
|
|
free(wbuf);
|
|
throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
|
|
}
|
|
#if __GLIBCXX__
|
|
int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
|
|
__gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
|
|
std::istream fin(&buffer);
|
|
#else // MSVC
|
|
// unused in our current build
|
|
auto fin = std::ifstream(wbuf, std::ios::binary);
|
|
#endif
|
|
free(wbuf);
|
|
#else
|
|
auto fin = std::ifstream(fname, std::ios::binary);
|
|
#endif
|
|
if (!fin) {
|
|
throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
|
|
}
|
|
|
|
// alloc memory and offload data
|
|
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
|
|
ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
|
|
ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
|
|
for (auto & t : tensors_to_load) {
|
|
struct ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
|
|
const size_t offset = tensor_offset[t->name];
|
|
fin.seekg(offset, std::ios::beg);
|
|
if (!fin) {
|
|
throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
|
|
}
|
|
size_t num_bytes = ggml_nbytes(cur);
|
|
if (ggml_backend_buft_is_host(buft)) {
|
|
// for the CPU and Metal backend, we can read directly into the tensor
|
|
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
|
|
} else {
|
|
// read into a temporary buffer first, then copy to device memory
|
|
read_buf.resize(num_bytes);
|
|
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
|
|
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
|
|
}
|
|
}
|
|
#if defined(_WIN32) && defined(__GLIBCXX__)
|
|
close(fd);
|
|
#else
|
|
fin.close();
|
|
#endif
|
|
|
|
LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
|
|
}
|
|
}
|
|
|
|
void alloc_compute_meta() {
|
|
ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
|
|
|
|
// create a fake batch
|
|
clip_image_f32_batch batch;
|
|
clip_image_f32_ptr img(clip_image_f32_init());
|
|
clip_image_size image_size;
|
|
image_size.width = ctx_clip.vision_model.hparams.image_size;
|
|
image_size.height = ctx_clip.vision_model.hparams.image_size;
|
|
img->nx = image_size.width;
|
|
img->ny = image_size.height;
|
|
img->buf.resize(image_size.width * image_size.height * 3);
|
|
batch.entries.push_back(std::move(img));
|
|
|
|
ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch, image_size, false);
|
|
ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
|
|
for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
|
|
ggml_backend_t backend = ctx_clip.backend_ptrs[i];
|
|
ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
|
|
size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
|
|
if (size > 1) {
|
|
LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
|
|
ggml_backend_buft_name(buft),
|
|
size / 1024.0 / 1024.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void get_bool(const std::string & key, bool & output, bool required = true) {
|
|
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
|
|
if (i < 0) {
|
|
if (required) throw std::runtime_error("Key not found: " + key);
|
|
return;
|
|
}
|
|
output = gguf_get_val_bool(ctx_gguf.get(), i);
|
|
}
|
|
|
|
void get_i32(const std::string & key, int & output, bool required = true) {
|
|
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
|
|
if (i < 0) {
|
|
if (required) throw std::runtime_error("Key not found: " + key);
|
|
return;
|
|
}
|
|
output = gguf_get_val_i32(ctx_gguf.get(), i);
|
|
}
|
|
|
|
void get_u32(const std::string & key, int & output, bool required = true) {
|
|
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
|
|
if (i < 0) {
|
|
if (required) throw std::runtime_error("Key not found: " + key);
|
|
return;
|
|
}
|
|
output = gguf_get_val_u32(ctx_gguf.get(), i);
|
|
}
|
|
|
|
void get_f32(const std::string & key, float & output, bool required = true) {
|
|
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
|
|
if (i < 0) {
|
|
if (required) throw std::runtime_error("Key not found: " + key);
|
|
return;
|
|
}
|
|
output = gguf_get_val_f32(ctx_gguf.get(), i);
|
|
}
|
|
|
|
void get_string(const std::string & key, std::string & output, bool required = true) {
|
|
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
|
|
if (i < 0) {
|
|
if (required) throw std::runtime_error("Key not found: " + key);
|
|
return;
|
|
}
|
|
output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
|
|
}
|
|
|
|
void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
|
|
const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
|
|
if (i < 0) {
|
|
if (required) throw std::runtime_error("Key not found: " + key);
|
|
return;
|
|
}
|
|
int n = gguf_get_arr_n(ctx_gguf.get(), i);
|
|
output.resize(n);
|
|
const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
|
|
for (int i = 0; i < n; ++i) {
|
|
output[i] = values[i];
|
|
}
|
|
}
|
|
};
|
|
|
|
// read and create ggml_context containing the tensors and their data
|
|
struct clip_ctx * clip_model_load(const char * fname, const int verbosity) {
|
|
return clip_init(fname, clip_context_params{
|
|
/* use_gpu */ true,
|
|
/* verbosity */ static_cast<ggml_log_level>(verbosity),
|
|
});
|
|
}
|
|
|
|
struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
|
|
g_logger_state.verbosity_thold = ctx_params.verbosity;
|
|
clip_ctx * ctx_clip = new clip_ctx(ctx_params);
|
|
|
|
try {
|
|
clip_model_loader loader(fname, *ctx_clip);
|
|
loader.load_hparams();
|
|
loader.load_tensors();
|
|
loader.alloc_compute_meta();
|
|
} catch (const std::exception & e) {
|
|
LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
|
|
delete ctx_clip;
|
|
return nullptr;
|
|
}
|
|
|
|
return ctx_clip;
|
|
}
|
|
|
|
void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
|
|
ctx_clip->load_image_size = *load_image_size; // copy
|
|
}
|
|
|
|
struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
|
|
return &ctx_clip->load_image_size;
|
|
}
|
|
|
|
struct clip_image_size * clip_image_size_init() {
|
|
struct clip_image_size * load_image_size = new struct clip_image_size();
|
|
load_image_size->width = 448;
|
|
load_image_size->height = 448;
|
|
return load_image_size;
|
|
}
|
|
|
|
struct clip_image_u8 * clip_image_u8_init() {
|
|
return new clip_image_u8();
|
|
}
|
|
|
|
struct clip_image_f32 * clip_image_f32_init() {
|
|
return new clip_image_f32();
|
|
}
|
|
|
|
struct clip_image_f32_batch * clip_image_f32_batch_init() {
|
|
return new clip_image_f32_batch();
|
|
}
|
|
|
|
unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
|
|
if (nx) *nx = img->nx;
|
|
if (ny) *ny = img->ny;
|
|
return img->buf.data();
|
|
}
|
|
|
|
void clip_image_size_free(struct clip_image_size * load_image_size) {
|
|
if (load_image_size == nullptr) {
|
|
return;
|
|
}
|
|
delete load_image_size;
|
|
}
|
|
void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
|
|
void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
|
|
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
|
|
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
|
|
|
|
size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
|
|
return batch->entries.size();
|
|
}
|
|
|
|
size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
|
|
if (idx < 0 || idx >= (int)batch->entries.size()) {
|
|
LOG_ERR("%s: invalid index %d\n", __func__, idx);
|
|
return 0;
|
|
}
|
|
return batch->entries[idx]->nx;
|
|
}
|
|
|
|
size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
|
|
if (idx < 0 || idx >= (int)batch->entries.size()) {
|
|
LOG_ERR("%s: invalid index %d\n", __func__, idx);
|
|
return 0;
|
|
}
|
|
return batch->entries[idx]->ny;
|
|
}
|
|
|
|
clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
|
|
if (idx < 0 || idx >= (int)batch->entries.size()) {
|
|
LOG_ERR("%s: invalid index %d\n", __func__, idx);
|
|
return nullptr;
|
|
}
|
|
return batch->entries[idx].get();
|
|
}
|
|
|
|
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
|
|
img->nx = nx;
|
|
img->ny = ny;
|
|
img->buf.resize(3 * nx * ny);
|
|
memcpy(img->buf.data(), rgb_pixels, img->buf.size());
|
|
}
|
|
|
|
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
|
|
int nx, ny, nc;
|
|
auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
|
|
if (!data) {
|
|
LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
|
|
return false;
|
|
}
|
|
clip_build_img_from_pixels(data, nx, ny, img);
|
|
stbi_image_free(data);
|
|
return true;
|
|
}
|
|
|
|
bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
|
|
int nx, ny, nc;
|
|
auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
|
|
if (!data) {
|
|
LOG_ERR("%s: failed to decode image bytes\n", __func__);
|
|
return false;
|
|
}
|
|
clip_build_img_from_pixels(data, nx, ny, img);
|
|
stbi_image_free(data);
|
|
return true;
|
|
}
|
|
|
|
// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
|
|
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
|
|
dst.nx = src.nx;
|
|
dst.ny = src.ny;
|
|
dst.buf.resize(src.buf.size());
|
|
|
|
// TODO @ngxson : seems like this could be done more efficiently on cgraph
|
|
for (size_t i = 0; i < src.buf.size(); ++i) {
|
|
int c = i % 3; // rgb
|
|
dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
|
|
}
|
|
}
|
|
|
|
// set of tools to manupulate images
|
|
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
|
|
struct image_manipulation {
|
|
// Bilinear resize function
|
|
static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
|
|
dst.nx = target_width;
|
|
dst.ny = target_height;
|
|
dst.buf.resize(3 * target_width * target_height);
|
|
|
|
float x_ratio = static_cast<float>(src.nx - 1) / target_width;
|
|
float y_ratio = static_cast<float>(src.ny - 1) / target_height;
|
|
|
|
for (int y = 0; y < target_height; y++) {
|
|
for (int x = 0; x < target_width; x++) {
|
|
float px = x_ratio * x;
|
|
float py = y_ratio * y;
|
|
int x_floor = static_cast<int>(px);
|
|
int y_floor = static_cast<int>(py);
|
|
float x_lerp = px - x_floor;
|
|
float y_lerp = py - y_floor;
|
|
|
|
for (int c = 0; c < 3; c++) {
|
|
float top = lerp(
|
|
static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
|
|
static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
|
|
x_lerp
|
|
);
|
|
float bottom = lerp(
|
|
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
|
|
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
|
|
x_lerp
|
|
);
|
|
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Bicubic resize function
|
|
// part of image will be cropped if the aspect ratio is different
|
|
static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
|
|
const int nx = img.nx;
|
|
const int ny = img.ny;
|
|
|
|
dst.nx = target_width;
|
|
dst.ny = target_height;
|
|
dst.buf.resize(3 * target_width * target_height);
|
|
|
|
float Cc;
|
|
float C[5];
|
|
float d0, d2, d3, a0, a1, a2, a3;
|
|
int i, j, k, jj;
|
|
int x, y;
|
|
float dx, dy;
|
|
float tx, ty;
|
|
|
|
tx = (float)nx / (float)target_width;
|
|
ty = (float)ny / (float)target_height;
|
|
|
|
// Bicubic interpolation; adapted from ViT.cpp, inspired from :
|
|
// -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
|
|
// -> https://en.wikipedia.org/wiki/Bicubic_interpolation
|
|
|
|
for (i = 0; i < target_height; i++) {
|
|
for (j = 0; j < target_width; j++) {
|
|
x = (int)(tx * j);
|
|
y = (int)(ty * i);
|
|
|
|
dx = tx * j - x;
|
|
dy = ty * i - y;
|
|
|
|
for (k = 0; k < 3; k++) {
|
|
for (jj = 0; jj <= 3; jj++) {
|
|
d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
|
|
d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
|
|
d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
|
|
a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
|
|
|
|
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
|
|
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
|
|
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
|
|
|
|
C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
|
|
|
|
d0 = C[0] - C[1];
|
|
d2 = C[2] - C[1];
|
|
d3 = C[3] - C[1];
|
|
a0 = C[1];
|
|
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
|
|
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
|
|
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
|
|
Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
|
|
|
|
const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
|
|
dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// llava-1.6 type of resize_and_pad
|
|
// if the ratio is not 1:1, padding with pad_color will be applied
|
|
// pad_color is single channel, default is 0 (black)
|
|
static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
|
|
int target_width = target_resolution.width;
|
|
int target_height = target_resolution.height;
|
|
|
|
float scale_w = static_cast<float>(target_width) / image.nx;
|
|
float scale_h = static_cast<float>(target_height) / image.ny;
|
|
|
|
int new_width, new_height;
|
|
|
|
if (scale_w < scale_h) {
|
|
new_width = target_width;
|
|
new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
|
|
} else {
|
|
new_height = target_height;
|
|
new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
|
|
}
|
|
|
|
clip_image_u8 resized_image;
|
|
bicubic_resize(image, resized_image, new_width, new_height);
|
|
|
|
clip_image_u8 padded_image;
|
|
padded_image.nx = target_width;
|
|
padded_image.ny = target_height;
|
|
padded_image.buf.resize(3 * target_width * target_height);
|
|
|
|
// Fill the padded image with the fill color
|
|
for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
|
|
padded_image.buf[i] = pad_color[0];
|
|
padded_image.buf[i + 1] = pad_color[1];
|
|
padded_image.buf[i + 2] = pad_color[2];
|
|
}
|
|
|
|
// Calculate padding offsets
|
|
int pad_x = (target_width - new_width) / 2;
|
|
int pad_y = (target_height - new_height) / 2;
|
|
|
|
// Copy the resized image into the center of the padded buffer
|
|
for (int y = 0; y < new_height; ++y) {
|
|
for (int x = 0; x < new_width; ++x) {
|
|
for (int c = 0; c < 3; ++c) {
|
|
padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
|
|
}
|
|
}
|
|
}
|
|
dst = std::move(padded_image);
|
|
}
|
|
|
|
static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
|
|
dst.nx = w;
|
|
dst.ny = h;
|
|
dst.buf.resize(3 * w * h);
|
|
|
|
for (int i = 0; i < h; ++i) {
|
|
for (int j = 0; j < w; ++j) {
|
|
int src_idx = 3 * ((y + i)*image.nx + (x + j));
|
|
int dst_idx = 3 * (i*w + j);
|
|
dst.buf[dst_idx] = image.buf[src_idx];
|
|
dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
|
|
dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculate the size of the **resized** image, while preserving the aspect ratio
|
|
// the calculated size will be aligned to the nearest multiple of align_size
|
|
// if H or W size is larger than max_dimension, it will be resized to max_dimension
|
|
static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
|
|
if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
|
|
return {0, 0};
|
|
}
|
|
|
|
float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
|
|
static_cast<float>(max_dimension) / inp_size.height));
|
|
|
|
float target_width_f = static_cast<float>(inp_size.width) * scale;
|
|
float target_height_f = static_cast<float>(inp_size.height) * scale;
|
|
|
|
int aligned_width = GGML_PAD((int)target_width_f, align_size);
|
|
int aligned_height = GGML_PAD((int)target_height_f, align_size);
|
|
|
|
return {aligned_width, aligned_height};
|
|
}
|
|
|
|
private:
|
|
static inline int clip(int x, int lower, int upper) {
|
|
return std::max(lower, std::min(x, upper));
|
|
}
|
|
|
|
// Linear interpolation between two points
|
|
static inline float lerp(float s, float e, float t) {
|
|
return s + (e - s) * t;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* implementation of LLaVA-UHD:
|
|
* - https://arxiv.org/pdf/2403.11703
|
|
* - https://github.com/thunlp/LLaVA-UHD
|
|
* - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
|
|
*
|
|
* overview:
|
|
* - an image always have a single overview (downscaled image)
|
|
* - an image can have 0 or multiple slices, depending on the image size
|
|
* - each slice can then be considered as a separate image
|
|
*
|
|
* for example:
|
|
*
|
|
* [overview] --> [slice 1] --> [slice 2]
|
|
* | |
|
|
* +--> [slice 3] --> [slice 4]
|
|
*/
|
|
struct llava_uhd {
|
|
struct slice_coordinates {
|
|
int x;
|
|
int y;
|
|
clip_image_size size;
|
|
};
|
|
|
|
struct slice_instructions {
|
|
clip_image_size overview_size; // size of downscaled image
|
|
clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
|
|
clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
|
|
std::vector<slice_coordinates> slices;
|
|
bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
|
|
};
|
|
|
|
static int get_max_slices(struct clip_ctx * ctx) {
|
|
if (clip_is_minicpmv(ctx)) {
|
|
return 9;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
|
|
slice_instructions res;
|
|
const int patch_size = clip_get_patch_size(ctx);
|
|
const int slice_size = clip_get_image_size(ctx);
|
|
const int max_slice_nums = get_max_slices(ctx);
|
|
const int original_width = original_size.width;
|
|
const int original_height = original_size.height;
|
|
const float log_ratio = log((float)original_width / original_height);
|
|
const float ratio = (float)original_width * original_height / (slice_size * slice_size);
|
|
const int multiple = fmin(ceil(ratio), max_slice_nums);
|
|
const bool has_slices = (multiple > 1);
|
|
const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty();
|
|
|
|
if (has_pinpoints) {
|
|
// has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
|
|
auto refine_size = llava_uhd::select_best_resolution(
|
|
ctx->vision_model.hparams.image_grid_pinpoints,
|
|
original_size);
|
|
res.overview_size = clip_image_size{slice_size, slice_size};
|
|
res.refined_size = refine_size;
|
|
res.grid_size = clip_image_size{0, 0};
|
|
res.padding_refined = true;
|
|
|
|
for (int y = 0; y < refine_size.height; y += slice_size) {
|
|
for (int x = 0; x < refine_size.width; x += slice_size) {
|
|
slice_coordinates slice;
|
|
slice.x = x;
|
|
slice.y = y;
|
|
slice.size.width = std::min(slice_size, refine_size.width - x);
|
|
slice.size.height = std::min(slice_size, refine_size.height - y);
|
|
res.slices.push_back(slice);
|
|
if (x == 0) {
|
|
res.grid_size.width++;
|
|
}
|
|
}
|
|
res.grid_size.height++;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
// no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
|
|
|
|
auto best_size = get_best_resize(original_size, slice_size, patch_size, has_slices);
|
|
res.overview_size = best_size;
|
|
|
|
if (!has_slices) {
|
|
// skip slicing logic
|
|
res.refined_size = clip_image_size{0, 0};
|
|
res.grid_size = clip_image_size{0, 0};
|
|
|
|
} else {
|
|
auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
|
|
auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
|
|
res.grid_size = best_grid;
|
|
res.refined_size = refine_size;
|
|
|
|
int width = refine_size.width;
|
|
int height = refine_size.height;
|
|
int grid_x = int(width / best_grid.width);
|
|
int grid_y = int(height / best_grid.height);
|
|
for (int patches_y = 0, ic = 0;
|
|
patches_y < refine_size.height && ic < best_grid.height;
|
|
patches_y += grid_y, ic += 1) {
|
|
for (int patches_x = 0, jc = 0;
|
|
patches_x < refine_size.width && jc < best_grid.width;
|
|
patches_x += grid_x, jc += 1) {
|
|
slice_coordinates slice;
|
|
slice.x = patches_x;
|
|
slice.y = patches_y;
|
|
slice.size.width = grid_x;
|
|
slice.size.height = grid_y;
|
|
res.slices.push_back(slice);
|
|
// LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
|
|
}
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
|
|
std::vector<clip_image_u8_ptr> output;
|
|
|
|
// resize to overview size
|
|
clip_image_u8_ptr resized_img(clip_image_u8_init());
|
|
image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
|
|
output.push_back(std::move(resized_img));
|
|
if (inst.slices.empty()) {
|
|
// no slices, just return the resized image
|
|
return output;
|
|
}
|
|
|
|
// resize to refined size
|
|
clip_image_u8_ptr refined_img(clip_image_u8_init());
|
|
if (inst.padding_refined) {
|
|
image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
|
|
} else {
|
|
image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
|
|
}
|
|
|
|
// create slices
|
|
for (const auto & slice : inst.slices) {
|
|
int x = slice.x;
|
|
int y = slice.y;
|
|
int w = slice.size.width;
|
|
int h = slice.size.height;
|
|
|
|
clip_image_u8_ptr img_slice(clip_image_u8_init());
|
|
image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
|
|
output.push_back(std::move(img_slice));
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
private:
|
|
static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
|
|
int width = original_size.width;
|
|
int height = original_size.height;
|
|
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
|
|
float r = static_cast<float>(width) / height;
|
|
height = static_cast<int>(scale_resolution / std::sqrt(r));
|
|
width = static_cast<int>(height * r);
|
|
}
|
|
clip_image_size res;
|
|
res.width = ensure_divide(width, patch_size);
|
|
res.height = ensure_divide(height, patch_size);
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* Selects the best resolution from a list of possible resolutions based on the original size.
|
|
*
|
|
* @param original_size The original size of the image
|
|
* @param possible_resolutions A list of possible resolutions
|
|
* @return The best fit resolution
|
|
*/
|
|
static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
|
|
int original_width = original_size.width;
|
|
int original_height = original_size.height;
|
|
clip_image_size best_fit;
|
|
int max_effective_resolution = 0;
|
|
int min_wasted_resolution = std::numeric_limits<int>::max();
|
|
|
|
for (const auto & resolution : possible_resolutions) {
|
|
int width = resolution.width;
|
|
int height = resolution.height;
|
|
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
|
|
int downscaled_width = static_cast<int>(original_width * scale);
|
|
int downscaled_height = static_cast<int>(original_height * scale);
|
|
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
|
|
int wasted_resolution = (width * height) - effective_resolution;
|
|
// LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
|
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
|
|
max_effective_resolution = effective_resolution;
|
|
min_wasted_resolution = wasted_resolution;
|
|
best_fit = resolution;
|
|
}
|
|
}
|
|
|
|
return best_fit;
|
|
}
|
|
|
|
// used by llava 1.6 with custom list of pinpoints
|
|
static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
|
|
std::vector<clip_image_size> possible_resolutions;
|
|
for (size_t i = 0; i < pinpoints.size(); i += 2) {
|
|
possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
|
|
}
|
|
return select_best_resolution(original_size, possible_resolutions);
|
|
}
|
|
|
|
static int ensure_divide(int length, int patch_size) {
|
|
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
|
|
}
|
|
|
|
static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
|
|
int width = original_size.width;
|
|
int height = original_size.height;
|
|
int grid_x = grid.width;
|
|
int grid_y = grid.height;
|
|
|
|
int refine_width = ensure_divide(width, grid_x);
|
|
int refine_height = ensure_divide(height, grid_y);
|
|
|
|
clip_image_size grid_size;
|
|
grid_size.width = refine_width / grid_x;
|
|
grid_size.height = refine_height / grid_y;
|
|
|
|
auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
|
|
int best_grid_width = best_grid_size.width;
|
|
int best_grid_height = best_grid_size.height;
|
|
|
|
clip_image_size refine_size;
|
|
refine_size.width = best_grid_width * grid_x;
|
|
refine_size.height = best_grid_height * grid_y;
|
|
return refine_size;
|
|
}
|
|
|
|
static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
|
|
std::vector<int> candidate_split_grids_nums;
|
|
for (int i : {multiple - 1, multiple, multiple + 1}) {
|
|
if (i == 1 || i > max_slice_nums) {
|
|
continue;
|
|
}
|
|
candidate_split_grids_nums.push_back(i);
|
|
}
|
|
|
|
std::vector<clip_image_size> candidate_grids;
|
|
for (int split_grids_nums : candidate_split_grids_nums) {
|
|
int m = 1;
|
|
while (m <= split_grids_nums) {
|
|
if (split_grids_nums % m == 0) {
|
|
candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
|
|
}
|
|
++m;
|
|
}
|
|
}
|
|
|
|
clip_image_size best_grid{1, 1};
|
|
float min_error = std::numeric_limits<float>::infinity();
|
|
for (const auto& grid : candidate_grids) {
|
|
float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
|
|
if (error < min_error) {
|
|
best_grid = grid;
|
|
min_error = error;
|
|
}
|
|
}
|
|
return best_grid;
|
|
}
|
|
};
|
|
|
|
// TODO @ngxson : decprecate the load_image_size singleton pattern
|
|
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
|
|
const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size);
|
|
return inst.grid_size.width;
|
|
}
|
|
|
|
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
|
|
// res_imgs memory is being allocated here, previous allocations will be freed if found
|
|
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
|
|
clip_image_size original_size{img->nx, img->ny};
|
|
bool pad_to_square = true;
|
|
auto & params = ctx->vision_model.hparams;
|
|
// The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
|
|
if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
|
|
pad_to_square = false;
|
|
}
|
|
|
|
if (clip_is_minicpmv(ctx)) {
|
|
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
|
|
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
|
|
|
|
for (size_t i = 0; i < imgs.size(); ++i) {
|
|
// clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
|
|
clip_image_f32_ptr res(clip_image_f32_init());
|
|
normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
|
|
res_imgs->entries.push_back(std::move(res));
|
|
}
|
|
return true;
|
|
}
|
|
else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
|
|
clip_image_u8 resized;
|
|
auto patch_size = clip_get_patch_size(ctx) * 2;
|
|
int nx = ceil((float)img->nx / patch_size) * patch_size;
|
|
int ny = ceil((float)img->ny / patch_size) * patch_size;
|
|
image_manipulation::bicubic_resize(*img, resized, nx, ny);
|
|
|
|
clip_image_f32_ptr img_f32(clip_image_f32_init());
|
|
// clip_image_f32_ptr res(clip_image_f32_init());
|
|
normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std);
|
|
// res_imgs->data[0] = *res;
|
|
res_imgs->entries.push_back(std::move(img_f32));
|
|
return true;
|
|
}
|
|
else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE
|
|
|| ctx->proj_type == PROJECTOR_TYPE_GEMMA3
|
|
|| ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
|
|
clip_image_u8 resized_image;
|
|
int sz = params.image_size;
|
|
image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
|
|
clip_image_f32_ptr img_f32(clip_image_f32_init());
|
|
//clip_image_save_to_bmp(resized_image, "resized.bmp");
|
|
normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
|
|
res_imgs->entries.push_back(std::move(img_f32));
|
|
return true;
|
|
}
|
|
else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
|
|
clip_image_u8 resized_image;
|
|
auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
|
|
image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
|
|
clip_image_f32_ptr img_f32(clip_image_f32_init());
|
|
normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
|
|
res_imgs->entries.push_back(std::move(img_f32));
|
|
return true;
|
|
}
|
|
|
|
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
|
|
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
|
|
|
|
clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
|
|
|
|
if (pad_to_square) {
|
|
// for llava-1.5, we resize image to a square, and pad the shorter side with a background color
|
|
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
|
|
const int longer_side = std::max(img->nx, img->ny);
|
|
temp->nx = longer_side;
|
|
temp->ny = longer_side;
|
|
temp->buf.resize(3 * longer_side * longer_side);
|
|
|
|
// background color in RGB from LLaVA (this is the mean rgb color * 255)
|
|
const std::array<uint8_t, 3> pad_color = {122, 116, 104};
|
|
|
|
// resize the image to the target_size
|
|
image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
|
|
|
|
clip_image_f32_ptr res(clip_image_f32_init());
|
|
normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
|
|
res_imgs->entries.push_back(std::move(res));
|
|
return true;
|
|
|
|
} else if (!params.image_grid_pinpoints.empty()) {
|
|
// "spatial_unpad" with "anyres" processing for llava-1.6
|
|
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
|
|
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
|
|
|
|
for (size_t i = 0; i < imgs.size(); ++i) {
|
|
// clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
|
|
clip_image_f32_ptr res(clip_image_f32_init());
|
|
normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
|
|
res_imgs->entries.push_back(std::move(res));
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
GGML_ASSERT(false && "Unknown image preprocessing type");
|
|
}
|
|
|
|
ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
|
|
return ctx->vision_model.image_newline;
|
|
}
|
|
|
|
void clip_free(clip_ctx * ctx) {
|
|
if (ctx == nullptr) {
|
|
return;
|
|
}
|
|
delete ctx;
|
|
}
|
|
|
|
// deprecated
|
|
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
|
|
const int32_t nx = ctx->vision_model.hparams.image_size;
|
|
const int32_t ny = ctx->vision_model.hparams.image_size;
|
|
return clip_embd_nbytes_by_img(ctx, nx, ny);
|
|
}
|
|
|
|
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
|
|
clip_image_f32 img;
|
|
img.nx = img_w;
|
|
img.ny = img_h;
|
|
return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
|
|
}
|
|
|
|
int32_t clip_get_image_size(const struct clip_ctx * ctx) {
|
|
return ctx->vision_model.hparams.image_size;
|
|
}
|
|
|
|
int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
|
|
return ctx->vision_model.hparams.patch_size;
|
|
}
|
|
|
|
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
|
|
return ctx->vision_model.hparams.hidden_size;
|
|
}
|
|
|
|
const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
|
|
return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
|
|
}
|
|
|
|
const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
|
|
if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
|
|
return &ctx->vision_model.hparams.image_grid_pinpoints.front();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
|
|
return ctx->vision_model.hparams.image_grid_pinpoints.size();
|
|
}
|
|
|
|
// deprecated
|
|
int clip_n_patches(const struct clip_ctx * ctx) {
|
|
clip_image_f32 img;
|
|
img.nx = ctx->vision_model.hparams.image_size;
|
|
img.ny = ctx->vision_model.hparams.image_size;
|
|
return clip_n_output_tokens(ctx, &img);
|
|
}
|
|
|
|
// deprecated
|
|
int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
|
|
return clip_n_output_tokens(ctx, img);
|
|
}
|
|
|
|
int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
|
|
const auto & params = ctx->vision_model.hparams;
|
|
const int n_total = clip_n_output_tokens(ctx, img);
|
|
if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
|
|
return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
|
|
}
|
|
return n_total;
|
|
}
|
|
|
|
int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
|
|
const auto & params = ctx->vision_model.hparams;
|
|
if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
|
|
return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
|
|
const auto & params = ctx->vision_model.hparams;
|
|
|
|
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
|
|
|
|
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
|
|
n_patches /= 4;
|
|
} else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
|
|
if (ctx->minicpmv_version == 2) {
|
|
n_patches = 96;
|
|
}
|
|
else if (ctx->minicpmv_version == 3) {
|
|
n_patches = 64;
|
|
}
|
|
else if (ctx->minicpmv_version == 4) {
|
|
n_patches = 64;
|
|
}
|
|
else {
|
|
GGML_ABORT("Unknown minicpmv version");
|
|
}
|
|
} else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
|
|
int patch_size = params.patch_size * 2;
|
|
int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
|
|
int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
|
|
n_patches = x_patch * y_patch;
|
|
} else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
|
|
n_patches = 256;
|
|
} else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
|
|
n_patches /= ctx->vision_model.hparams.proj_scale_factor;
|
|
} else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
|
|
int n_patches_x = img->nx / params.patch_size;
|
|
int n_patches_y = img->ny / params.patch_size;
|
|
n_patches = n_patches_y*n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
|
|
}
|
|
|
|
return n_patches;
|
|
}
|
|
|
|
static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
|
|
assert(embed_dim % 2 == 0);
|
|
int H = pos.size();
|
|
int W = pos[0].size();
|
|
|
|
std::vector<float> omega(embed_dim / 2);
|
|
for (int i = 0; i < embed_dim / 2; ++i) {
|
|
omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
|
|
}
|
|
|
|
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
|
|
for (int h = 0; h < H; ++h) {
|
|
for (int w = 0; w < W; ++w) {
|
|
for (int d = 0; d < embed_dim / 2; ++d) {
|
|
float out_value = pos[h][w] * omega[d];
|
|
emb[h][w][d] = sin(out_value);
|
|
emb[h][w][d + embed_dim / 2] = cos(out_value);
|
|
}
|
|
}
|
|
}
|
|
|
|
return emb;
|
|
}
|
|
|
|
static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
|
|
assert(embed_dim % 2 == 0);
|
|
std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
|
|
std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
|
|
|
|
int H = emb_h.size();
|
|
int W = emb_h[0].size();
|
|
std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
|
|
|
|
for (int h = 0; h < H; ++h) {
|
|
for (int w = 0; w < W; ++w) {
|
|
for (int d = 0; d < embed_dim / 2; ++d) {
|
|
emb[h][w][d] = emb_h[h][w][d];
|
|
emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
|
|
}
|
|
}
|
|
}
|
|
return emb;
|
|
}
|
|
|
|
static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
|
|
int grid_h_size = image_size.first;
|
|
int grid_w_size = image_size.second;
|
|
|
|
std::vector<float> grid_h(grid_h_size);
|
|
std::vector<float> grid_w(grid_w_size);
|
|
|
|
for (int i = 0; i < grid_h_size; ++i) {
|
|
grid_h[i] = static_cast<float>(i);
|
|
}
|
|
for (int i = 0; i < grid_w_size; ++i) {
|
|
grid_w[i] = static_cast<float>(i);
|
|
}
|
|
|
|
std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
|
|
for (int h = 0; h < grid_h_size; ++h) {
|
|
for (int w = 0; w < grid_w_size; ++w) {
|
|
grid[h][w] = grid_w[w];
|
|
}
|
|
}
|
|
std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
|
|
for (int h = 0; h < grid_h_size; ++h) {
|
|
for (int w = 0; w < grid_w_size; ++w) {
|
|
grid_2d[0][h][w] = grid_h[h];
|
|
grid_2d[1][h][w] = grid_w[w];
|
|
}
|
|
}
|
|
|
|
std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
|
|
|
|
int H = image_size.first;
|
|
int W = image_size.second;
|
|
std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
|
|
for (int h = 0; h < H; ++h) {
|
|
for (int w = 0; w < W; ++w) {
|
|
pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
|
|
}
|
|
}
|
|
|
|
return pos_embed_2d;
|
|
}
|
|
|
|
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
|
|
clip_image_f32_batch imgs;
|
|
clip_image_f32_ptr img_copy(clip_image_f32_init());
|
|
*img_copy = *img;
|
|
imgs.entries.push_back(std::move(img_copy));
|
|
|
|
return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
|
|
}
|
|
|
|
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
|
|
const clip_image_f32_batch & imgs = *imgs_c_ptr;
|
|
int batch_size = imgs.entries.size();
|
|
|
|
if (ctx->has_llava_projector
|
|
|| ctx->proj_type == PROJECTOR_TYPE_MINICPMV
|
|
|| ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
|
|
GGML_ASSERT(batch_size == 1);
|
|
}
|
|
|
|
// build the inference graph
|
|
ggml_backend_sched_reset(ctx->sched.get());
|
|
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
|
|
ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
|
|
|
|
// set inputs
|
|
const auto & model = ctx->vision_model;
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int image_size_width = imgs.entries[0]->nx;
|
|
const int image_size_height = imgs.entries[0]->ny;
|
|
|
|
const int patch_size = hparams.patch_size;
|
|
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
|
|
const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
|
|
const int pos_w = ctx->load_image_size.width / patch_size;
|
|
const int pos_h = ctx->load_image_size.height / patch_size;
|
|
|
|
const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
|
|
|
|
auto get_inp_tensor = [&gf](const char * name) {
|
|
struct ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
|
|
if (inp == nullptr) {
|
|
GGML_ABORT("Failed to get tensor %s", name);
|
|
}
|
|
if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
|
|
GGML_ABORT("Tensor %s is not an input tensor", name);
|
|
}
|
|
return inp;
|
|
};
|
|
|
|
auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
|
|
ggml_tensor * cur = get_inp_tensor(name);
|
|
GGML_ASSERT(cur->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
|
|
ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
|
|
};
|
|
|
|
auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
|
|
ggml_tensor * cur = get_inp_tensor(name);
|
|
GGML_ASSERT(cur->type == GGML_TYPE_I32);
|
|
GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
|
|
ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
|
|
};
|
|
|
|
// set input pixel values
|
|
{
|
|
size_t nelem = 0;
|
|
for (const auto & img : imgs.entries) {
|
|
nelem += img->nx * img->ny * 3;
|
|
}
|
|
std::vector<float> inp_raw(nelem);
|
|
|
|
// layout of data (note: the channel dim is unrolled to better visualize the layout):
|
|
//
|
|
// ┌──W──┐
|
|
// │ H │ channel = R
|
|
// ├─────┤ │
|
|
// │ H │ channel = G
|
|
// ├─────┤ │
|
|
// │ H │ channel = B
|
|
// └─────┘ │
|
|
// ──────┘ x B
|
|
|
|
for (size_t i = 0; i < imgs.entries.size(); i++) {
|
|
const int nx = imgs.entries[i]->nx;
|
|
const int ny = imgs.entries[i]->ny;
|
|
const int n = nx * ny;
|
|
|
|
for (int b = 0; b < batch_size; b++) {
|
|
float * batch_entry = inp_raw.data() + b * (3*n);
|
|
for (int y = 0; y < ny; y++) {
|
|
for (int x = 0; x < nx; x++) {
|
|
size_t base_src = 3*(y * nx + x); // idx of the first channel
|
|
size_t base_dst = y * nx + x; // idx of the first channel
|
|
batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
|
|
batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
|
|
batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
set_input_f32("inp_raw", inp_raw);
|
|
}
|
|
|
|
// set input per projector
|
|
switch (ctx->proj_type) {
|
|
case PROJECTOR_TYPE_MINICPMV:
|
|
{
|
|
// inspired from siglip:
|
|
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
|
|
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
|
|
std::vector<int32_t> positions(pos_h * pos_w);
|
|
int bucket_coords_h[1024];
|
|
int bucket_coords_w[1024];
|
|
for (int i = 0; i < pos_h; i++){
|
|
bucket_coords_h[i] = std::floor(70.0*i/pos_h);
|
|
}
|
|
for (int i = 0; i < pos_w; i++){
|
|
bucket_coords_w[i] = std::floor(70.0*i/pos_w);
|
|
}
|
|
for (int i = 0, id = 0; i < pos_h; i++){
|
|
for (int j = 0; j < pos_w; j++){
|
|
positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
|
|
}
|
|
}
|
|
set_input_i32("positions", positions);
|
|
|
|
// inspired from resampler of Qwen-VL:
|
|
// -> https://huggingface.co/Qwen/Qwen-VL/tree/main
|
|
// -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
|
|
int embed_dim = clip_n_mmproj_embd(ctx);
|
|
|
|
// TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
|
|
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
|
|
|
|
std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
|
|
for(int i = 0; i < pos_w * pos_h; ++i){
|
|
for(int j = 0; j < embed_dim; ++j){
|
|
pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
|
|
}
|
|
}
|
|
|
|
set_input_f32("pos_embed", pos_embed);
|
|
} break;
|
|
case PROJECTOR_TYPE_QWEN2VL:
|
|
{
|
|
const int merge_ratio = 2;
|
|
const int pw = image_size_width / patch_size;
|
|
const int ph = image_size_height / patch_size;
|
|
std::vector<int> positions(num_positions * 4);
|
|
int ptr = 0;
|
|
for (int y = 0; y < ph; y += merge_ratio) {
|
|
for (int x = 0; x < pw; x += merge_ratio) {
|
|
for (int dy = 0; dy < 2; dy++) {
|
|
for (int dx = 0; dx < 2; dx++) {
|
|
positions[ ptr] = y + dy;
|
|
positions[ num_patches + ptr] = x + dx;
|
|
positions[2 * num_patches + ptr] = y + dy;
|
|
positions[3 * num_patches + ptr] = x + dx;
|
|
ptr++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
set_input_i32("positions", positions);
|
|
} break;
|
|
case PROJECTOR_TYPE_QWEN25VL:
|
|
{
|
|
// pw * ph = number of tokens output by ViT after apply patch merger
|
|
// ipw * ipw = number of vision token been processed inside ViT
|
|
const int merge_ratio = 2;
|
|
const int pw = image_size_width / patch_size / merge_ratio;
|
|
const int ph = image_size_height / patch_size / merge_ratio;
|
|
const int ipw = image_size_width / patch_size;
|
|
const int iph = image_size_height / patch_size;
|
|
|
|
std::vector<int> idx (ph * pw);
|
|
std::vector<int> inv_idx(ph * pw);
|
|
|
|
if (use_window_attn) {
|
|
const int attn_window_size = 112;
|
|
const int grid_window = attn_window_size / patch_size / merge_ratio;
|
|
int dst = 0;
|
|
// [num_vision_tokens, num_vision_tokens] attention mask tensor
|
|
std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
|
|
int mask_row = 0;
|
|
|
|
for (int y = 0; y < ph; y += grid_window) {
|
|
for (int x = 0; x < pw; x += grid_window) {
|
|
const int win_h = std::min(grid_window, ph - y);
|
|
const int win_w = std::min(grid_window, pw - x);
|
|
const int dst_0 = dst;
|
|
// group all tokens belong to the same window togather (to a continue range)
|
|
for (int dy = 0; dy < win_h; dy++) {
|
|
for (int dx = 0; dx < win_w; dx++) {
|
|
const int src = (y + dy) * pw + (x + dx);
|
|
GGML_ASSERT(src < (int)idx.size());
|
|
GGML_ASSERT(dst < (int)inv_idx.size());
|
|
idx [src] = dst;
|
|
inv_idx[dst] = src;
|
|
dst++;
|
|
}
|
|
}
|
|
|
|
for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
|
|
int row_offset = mask_row * (ipw * iph);
|
|
std::fill(
|
|
mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
|
|
mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
|
|
0.0);
|
|
mask_row++;
|
|
}
|
|
}
|
|
}
|
|
|
|
set_input_i32("window_idx", idx);
|
|
set_input_i32("inv_window_idx", inv_idx);
|
|
set_input_f32("window_mask", mask);
|
|
} else {
|
|
for (int i = 0; i < ph * pw; i++) {
|
|
idx[i] = i;
|
|
}
|
|
}
|
|
|
|
const int mpow = merge_ratio * merge_ratio;
|
|
std::vector<int> positions(num_positions * 4);
|
|
|
|
int ptr = 0;
|
|
for (int y = 0; y < iph; y += merge_ratio) {
|
|
for (int x = 0; x < ipw; x += merge_ratio) {
|
|
for (int dy = 0; dy < 2; dy++) {
|
|
for (int dx = 0; dx < 2; dx++) {
|
|
auto remap = idx[ptr / mpow];
|
|
remap = (remap * mpow) + (ptr % mpow);
|
|
|
|
positions[ remap] = y + dy;
|
|
positions[ num_patches + remap] = x + dx;
|
|
positions[2 * num_patches + remap] = y + dy;
|
|
positions[3 * num_patches + remap] = x + dx;
|
|
ptr++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
set_input_i32("positions", positions);
|
|
} break;
|
|
case PROJECTOR_TYPE_PIXTRAL:
|
|
{
|
|
// set the 2D positions
|
|
int n_patches_per_col = image_size_width / patch_size;
|
|
std::vector<int> pos_data(num_positions);
|
|
// dimension H
|
|
for (int i = 0; i < num_positions; i++) {
|
|
pos_data[i] = i / n_patches_per_col;
|
|
}
|
|
set_input_i32("pos_h", pos_data);
|
|
// dimension W
|
|
for (int i = 0; i < num_positions; i++) {
|
|
pos_data[i] = i % n_patches_per_col;
|
|
}
|
|
set_input_i32("pos_w", pos_data);
|
|
} break;
|
|
case PROJECTOR_TYPE_GLM_EDGE:
|
|
{
|
|
// llava and other models
|
|
std::vector<int32_t> positions(num_positions);
|
|
for (int i = 0; i < num_positions; i++) {
|
|
positions[i] = i;
|
|
}
|
|
set_input_i32("positions", positions);
|
|
} break;
|
|
case PROJECTOR_TYPE_MLP:
|
|
case PROJECTOR_TYPE_MLP_NORM:
|
|
case PROJECTOR_TYPE_LDP:
|
|
case PROJECTOR_TYPE_LDPV2:
|
|
{
|
|
// llava and other models
|
|
std::vector<int32_t> positions(num_positions);
|
|
for (int i = 0; i < num_positions; i++) {
|
|
positions[i] = i;
|
|
}
|
|
set_input_i32("positions", positions);
|
|
|
|
// The patches vector is used to get rows to index into the embeds with;
|
|
// we should skip dim 0 only if we have CLS to avoid going out of bounds
|
|
// when retrieving the rows.
|
|
int patch_offset = model.class_embedding ? 1 : 0;
|
|
std::vector<int32_t> patches(num_patches);
|
|
for (int i = 0; i < num_patches; i++) {
|
|
patches[i] = i + patch_offset;
|
|
}
|
|
set_input_i32("patches", patches);
|
|
} break;
|
|
case PROJECTOR_TYPE_GEMMA3:
|
|
case PROJECTOR_TYPE_IDEFICS3:
|
|
{
|
|
// do nothing
|
|
} break;
|
|
default:
|
|
GGML_ABORT("Unknown projector type");
|
|
}
|
|
|
|
ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
|
|
|
|
auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
|
|
if (status != GGML_STATUS_SUCCESS) {
|
|
LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
|
|
return false;
|
|
}
|
|
|
|
// the last node is the embedding tensor
|
|
struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
|
|
|
|
// copy the embeddings to the location passed by the user
|
|
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
|
|
assert(itype < GGML_TYPE_COUNT);
|
|
ggml_type type = static_cast<ggml_type>(itype);
|
|
|
|
auto * ctx_clip = clip_init(fname_inp, clip_context_params{
|
|
/* use_gpu */ false,
|
|
/* verbosity */ GGML_LOG_LEVEL_ERROR,
|
|
});
|
|
|
|
const auto & ctx_src = ctx_clip->ctx_gguf.get();
|
|
const auto & ctx_data = ctx_clip->ctx_data.get();
|
|
|
|
auto * ctx_out = gguf_init_empty();
|
|
gguf_set_kv(ctx_out, ctx_src);
|
|
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
|
|
gguf_set_val_u32(ctx_out, "general.file_type", itype);
|
|
|
|
auto fout = std::ofstream(fname_out, std::ios::binary);
|
|
|
|
const int n_tensors = gguf_get_n_tensors(ctx_src);
|
|
|
|
for (int i = 0; i < n_tensors; ++i) {
|
|
const char * name = gguf_get_tensor_name(ctx_src, i);
|
|
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
|
|
gguf_add_tensor(ctx_out, cur);
|
|
}
|
|
|
|
const size_t meta_size = gguf_get_meta_size(ctx_out);
|
|
for (size_t i = 0; i < meta_size; ++i) {
|
|
fout.put(0);
|
|
}
|
|
|
|
// regexes of tensor names to be quantized
|
|
const std::vector<std::string> k_names = {
|
|
".*weight",
|
|
};
|
|
|
|
std::vector<uint8_t> work(512);
|
|
std::vector<float> conv_buf(512);
|
|
size_t total_size_org = 0;
|
|
size_t total_size_new = 0;
|
|
|
|
for (int i = 0; i < n_tensors; ++i) {
|
|
const std::string name = gguf_get_tensor_name(ctx_src, i);
|
|
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
|
|
|
|
enum ggml_type new_type;
|
|
void * new_data;
|
|
size_t new_size;
|
|
|
|
bool quantize = false;
|
|
for (const auto & s : k_names) {
|
|
if (std::regex_match(name, std::regex(s))) {
|
|
quantize = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// quantize only 2D tensors and bigger than block size
|
|
quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
|
|
|
|
if (quantize) {
|
|
new_type = type;
|
|
if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
|
|
new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
|
|
// LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
|
|
}
|
|
const size_t n_elms = ggml_nelements(cur);
|
|
float * f32_data;
|
|
|
|
switch (cur->type) {
|
|
case GGML_TYPE_F32:
|
|
f32_data = (float *)cur->data;
|
|
break;
|
|
case GGML_TYPE_F16:
|
|
if (conv_buf.size() < n_elms) {
|
|
conv_buf.resize(n_elms);
|
|
}
|
|
for (size_t j = 0; j < n_elms; ++j) {
|
|
conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
|
|
}
|
|
f32_data = (float *)conv_buf.data();
|
|
break;
|
|
default:
|
|
LOG_ERR("%s: Please use an input file in f32 or f16\n", __func__);
|
|
gguf_free(ctx_out);
|
|
return false;
|
|
}
|
|
|
|
if (work.size() < n_elms * 4) {
|
|
work.resize(n_elms * 4);
|
|
}
|
|
new_data = work.data();
|
|
|
|
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
|
|
} else {
|
|
new_type = cur->type;
|
|
new_data = cur->data;
|
|
new_size = ggml_nbytes(cur);
|
|
}
|
|
const size_t orig_size = ggml_nbytes(cur);
|
|
total_size_org += orig_size;
|
|
total_size_new += new_size;
|
|
gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
|
|
GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
|
|
gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
|
|
fout.write((const char *)new_data, new_size);
|
|
size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
|
|
for (size_t j = 0; j < pad; ++j) {
|
|
fout.put(0);
|
|
}
|
|
|
|
LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
|
|
orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
|
}
|
|
|
|
// go back to beginning of file and write the updated metadata
|
|
fout.seekp(0, std::ios::beg);
|
|
std::vector<uint8_t> meta(meta_size);
|
|
gguf_get_meta_data(ctx_out, meta.data());
|
|
fout.write((const char *)meta.data(), meta_size);
|
|
|
|
fout.close();
|
|
|
|
clip_free(ctx_clip);
|
|
gguf_free(ctx_out);
|
|
|
|
{
|
|
LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
|
|
LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|
switch (ctx->proj_type) {
|
|
case PROJECTOR_TYPE_LDP:
|
|
return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
|
|
case PROJECTOR_TYPE_LDPV2:
|
|
return ctx->vision_model.mm_model_peg_0_b->ne[0];
|
|
case PROJECTOR_TYPE_MLP:
|
|
case PROJECTOR_TYPE_PIXTRAL:
|
|
return ctx->vision_model.mm_2_b->ne[0];
|
|
case PROJECTOR_TYPE_MLP_NORM:
|
|
return ctx->vision_model.mm_3_b->ne[0];
|
|
case PROJECTOR_TYPE_MINICPMV:
|
|
if (ctx->minicpmv_version == 2) {
|
|
return 4096;
|
|
} else if (ctx->minicpmv_version == 3) {
|
|
return 3584;
|
|
} else if (ctx->minicpmv_version == 4) {
|
|
return 3584;
|
|
}
|
|
GGML_ABORT("Unknown minicpmv version");
|
|
case PROJECTOR_TYPE_GLM_EDGE:
|
|
return ctx->vision_model.mm_model_mlp_3_w->ne[1];
|
|
case PROJECTOR_TYPE_QWEN2VL:
|
|
case PROJECTOR_TYPE_QWEN25VL:
|
|
return ctx->vision_model.mm_1_b->ne[0];
|
|
case PROJECTOR_TYPE_GEMMA3:
|
|
return ctx->vision_model.mm_input_proj_w->ne[0];
|
|
case PROJECTOR_TYPE_IDEFICS3:
|
|
return ctx->vision_model.projection->ne[1];
|
|
default:
|
|
GGML_ABORT("Unknown projector type");
|
|
}
|
|
}
|
|
|
|
int clip_is_minicpmv(const struct clip_ctx * ctx) {
|
|
if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
|
|
return ctx->minicpmv_version;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool clip_is_glm(const struct clip_ctx * ctx) {
|
|
return ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE;
|
|
}
|
|
|
|
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
|
|
return ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL;
|
|
}
|
|
|
|
bool clip_is_llava(const struct clip_ctx * ctx) {
|
|
return ctx->has_llava_projector;
|
|
}
|
|
|
|
bool clip_is_gemma3(const struct clip_ctx * ctx) {
|
|
return ctx->proj_type == PROJECTOR_TYPE_GEMMA3;
|
|
}
|
|
|
|
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
|
|
clip_image_f32 clip_img;
|
|
clip_img.buf.resize(h * w * 3);
|
|
for (int i = 0; i < h*w*3; i++)
|
|
{
|
|
clip_img.buf[i] = img[i];
|
|
}
|
|
clip_img.nx = w;
|
|
clip_img.ny = h;
|
|
clip_image_encode(ctx, n_threads, &clip_img, vec);
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// API used internally with mtmd
|
|
//
|
|
|
|
projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
|
|
return ctx->proj_type;
|
|
}
|