llama: update to commit e1e8e099 (#10513)

This commit is contained in:
Jeffrey Morgan 2025-05-01 18:24:09 -07:00 committed by GitHub
parent e6d2d04121
commit 8dd12c873d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
68 changed files with 3783 additions and 1774 deletions

2
llama/build-info.cpp generated vendored
View file

@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "2016f07bd106c73699ecbaace80f55db5ed95dac";
char const *LLAMA_COMMIT = "e1e8e0991ffd9e99a445c6812bb519d5bac9f4b5";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View file

@ -342,6 +342,8 @@ struct common_params {
// multimodal models (see examples/llava)
struct common_params_model mmproj;
bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model
std::vector<std::string> image; // path to image file(s)
// embedding

View file

@ -16,6 +16,9 @@ using json = nlohmann::ordered_json;
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
auto has_max = max_items != std::numeric_limits<int>::max();
if (max_items == 0) {
return "";
}
if (min_items == 0 && max_items == 1) {
return item_rule + "?";
}

View file

@ -2,8 +2,6 @@
#include "gguf.h"
#include "clip.h"
#include "clip.h"
#include <climits>
#include <cstdarg>
#include <string>
@ -17,33 +15,31 @@
#define KEY_FTYPE "general.file_type"
#define KEY_NAME "general.name"
#define KEY_DESCRIPTION "general.description"
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
#define KEY_USE_GELU "clip.use_gelu"
#define KEY_USE_SILU "clip.use_silu"
#define KEY_N_EMBD "clip.%s.embedding_length"
#define KEY_N_FF "clip.%s.feed_forward_length"
#define KEY_N_BLOCK "clip.%s.block_count"
#define KEY_N_HEAD "clip.%s.attention.head_count"
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM "clip.%s.projection_dim"
#define KEY_TOKENS "tokenizer.ggml.tokens"
#define KEY_N_POSITIONS "clip.text.context_length"
#define KEY_N_EMBD "clip.vision.embedding_length"
#define KEY_N_FF "clip.vision.feed_forward_length"
#define KEY_N_BLOCK "clip.vision.block_count"
#define KEY_N_HEAD "clip.vision.attention.head_count"
#define KEY_LAYER_NORM_EPS "clip.vision.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM "clip.vision.projection_dim"
#define KEY_IMAGE_SIZE "clip.vision.image_size"
#define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_PROJ_SCALE_FACTOR "clip.vision.projector.scale_factor"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_USE_GLU_MLP "clip.use_glu_mlp" // for qwen2.5vl
#define KEY_USE_RMS_NORM "clip.use_rms_norm" // for qwen2.5vl
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
#define KEY_WIN_ATTN_PATTERN "clip.vision.n_wa_pattern"
#define KEY_ATTN_WINDOW_SIZE "clip.vision.window_size"
//
@ -60,7 +56,9 @@
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
#define TN_LN_1 "%s.blk.%d.ln1.%s"
#define TN_LN_2 "%s.blk.%d.ln2.%s"
#define TN_LN_PRE "%s.pre_ln.%s"
@ -72,6 +70,8 @@
#define TN_IMAGE_NEWLINE "model.image_newline"
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
#define TN_MM_PROJECTOR "mm.model.fc.weight" // idefics3
#define TN_TOK_IMG_BREAK "v.token_embd.img_break" // pixtral
// mimicpmv
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
@ -87,18 +87,19 @@
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
#define TN_GLM_BOI_W "adapter.boi"
#define TN_GLM_EOI_W "adapter.eoi"
enum projector_type {
PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM,
PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2,
PROJECTOR_TYPE_RESAMPLER,
PROJECTOR_TYPE_MINICPMV,
PROJECTOR_TYPE_GLM_EDGE,
PROJECTOR_TYPE_MERGER,
PROJECTOR_TYPE_QWEN2VL,
PROJECTOR_TYPE_GEMMA3,
PROJECTOR_TYPE_IDEFICS3,
PROJECTOR_TYPE_PIXTRAL,
PROJECTOR_TYPE_QWEN25VL,
PROJECTOR_TYPE_UNKNOWN,
};
@ -106,10 +107,13 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MLP, "mlp" },
{ PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
{ PROJECTOR_TYPE_MINICPMV, "resampler"},
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
{ PROJECTOR_TYPE_QWEN2VL, "qwen2vl_merger"},
{ PROJECTOR_TYPE_QWEN25VL, "qwen2.5vl_merger"},
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
{ PROJECTOR_TYPE_IDEFICS3, "idefics3"},
{ PROJECTOR_TYPE_PIXTRAL, "pixtral"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {

File diff suppressed because it is too large Load diff

View file

@ -47,7 +47,7 @@ CLIP_API struct clip_ctx * clip_init(const char * fname, struct clip_context_par
CLIP_API void clip_free(struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w);
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h);
CLIP_API int32_t clip_get_image_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_patch_size (const struct clip_ctx * ctx);
@ -59,9 +59,20 @@ CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
CLIP_API size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
CLIP_API int clip_n_patches_by_img (const struct clip_ctx * ctx, struct clip_image_f32 * img);
CLIP_API int clip_n_mmproj_embd (const struct clip_ctx * ctx);
GGML_DEPRECATED(CLIP_API int clip_n_patches(const struct clip_ctx * ctx),
"use clip_n_output_tokens instead");
GGML_DEPRECATED(CLIP_API int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img),
"use clip_n_output_tokens instead");
CLIP_API int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img);
// for M-RoPE, this will be the number of token positions in X and Y directions
// for other models, X will be the total number of tokens and Y will be 1
CLIP_API int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img);
CLIP_API int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img);
// this should be equal to the embedding dimension of the text model
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
@ -114,8 +125,6 @@ CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
CLIP_API bool clip_is_llava(const struct clip_ctx * ctx);
CLIP_API bool clip_is_gemma3(const struct clip_ctx * ctx);
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);

View file

@ -112,7 +112,7 @@ static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<
}
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out, clip_image_f32 * img_input) {
struct {
struct ggml_context * ctx;
} model;
@ -175,7 +175,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
model.ctx = ggml_init(params);
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_output_tokens(ctx_clip, img_input), num_images - 1); // example: 4096 x 576 x 4
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
// fill it with the image embeddings, ignoring the base
for (size_t i = 1; i < num_images; i++) {
@ -214,8 +214,8 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
// append without newline tokens (default behavior in llava_arch when not using unpad ):
memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
memcpy(image_embd_out + clip_n_output_tokens(ctx_clip, img_input) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_output_tokens(ctx_clip, img_input));
// Debug: Test single segments
// Current findings: sending base image, sending a segment embedding all works similar to python
@ -313,7 +313,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
image_embd_v[i],
clip_embd_nbytes_by_img(ctx_clip, nx, ny));
n_img_pos_out += clip_n_patches_by_img(ctx_clip, img_res);
n_img_pos_out += clip_n_output_tokens(ctx_clip, img_res);
}
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {
@ -342,8 +342,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
}
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding
*n_img_pos = clip_n_patches(ctx_clip);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
*n_img_pos = clip_n_output_tokens(ctx_clip, img_res);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
if (!encoded) {
LOG_ERR("Unable to encode image\n");
@ -381,7 +381,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
int n_img_pos_out;
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
clip_image_f32 * img_input = clip_image_f32_get_img(img_res_v.get(), 0);
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out, img_input);
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {

View file

@ -111,6 +111,7 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_TRILLION = 31,
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32,
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34,
};
enum llama_rope_type {
@ -1237,6 +1238,7 @@ extern "C" {
"will be removed in the future (see https://github.com/ggml-org/llama.cpp/pull/9896#discussion_r1800920915)");
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
/// Setting k <= 0 makes this a noop
LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751

View file

@ -20,6 +20,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_REFACT, "refact" },
{ LLM_ARCH_BERT, "bert" },
{ LLM_ARCH_NOMIC_BERT, "nomic-bert" },
{ LLM_ARCH_NOMIC_BERT_MOE, "nomic-bert-moe" },
{ LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
{ LLM_ARCH_BLOOM, "bloom" },
{ LLM_ARCH_STABLELM, "stablelm" },
@ -109,6 +110,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
{ LLM_KV_EXPERT_WEIGHTS_NORM, "%s.expert_weights_norm" },
{ LLM_KV_EXPERT_GATING_FUNC, "%s.expert_gating_func" },
{ LLM_KV_MOE_EVERY_N_LAYERS, "%s.moe_every_n_layers" },
{ LLM_KV_POOLING_TYPE, "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
@ -511,6 +513,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_NOMIC_BERT_MOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
{ LLM_TENSOR_TOKEN_TYPES, "token_types" },
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_JINA_BERT_V2,
{

View file

@ -24,6 +24,7 @@ enum llm_arch {
LLM_ARCH_REFACT,
LLM_ARCH_BERT,
LLM_ARCH_NOMIC_BERT,
LLM_ARCH_NOMIC_BERT_MOE,
LLM_ARCH_JINA_BERT_V2,
LLM_ARCH_BLOOM,
LLM_ARCH_STABLELM,
@ -113,6 +114,7 @@ enum llm_kv {
LLM_KV_EXPERT_WEIGHTS_SCALE,
LLM_KV_EXPERT_WEIGHTS_NORM,
LLM_KV_EXPERT_GATING_FUNC,
LLM_KV_MOE_EVERY_N_LAYERS,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,

View file

@ -50,8 +50,8 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "deepseek3", LLM_CHAT_TEMPLATE_DEEPSEEK_3 },
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGLM_3 },
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGLM_4 },
{ "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE },
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
@ -62,6 +62,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "yandex", LLM_CHAT_TEMPLATE_YANDEX },
{ "bailing", LLM_CHAT_TEMPLATE_BAILING },
{ "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
{ "smolvlm", LLM_CHAT_TEMPLATE_SMOLVLM },
};
llm_chat_template llm_chat_template_from_str(const std::string & name) {
@ -81,7 +82,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
if (tmpl_contains("<|im_start|>")) {
return tmpl_contains("<|im_sep|>")
? LLM_CHAT_TEMPLATE_PHI_4
: LLM_CHAT_TEMPLATE_CHATML;
: tmpl_contains("<end_of_utterance>")
? LLM_CHAT_TEMPLATE_SMOLVLM // SmolVLM uses <|im_start|> as BOS, but it is NOT chatml
: LLM_CHAT_TEMPLATE_CHATML;
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
if (tmpl_contains("[SYSTEM_PROMPT]")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
@ -119,8 +122,12 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
}
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
return LLM_CHAT_TEMPLATE_PHI_3;
} else if (tmpl_contains("[gMASK]<sop>")) {
return LLM_CHAT_TEMPLATE_CHATGLM_4;
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
return tmpl_contains("</s>") ? LLM_CHAT_TEMPLATE_FALCON_3 : LLM_CHAT_TEMPLATE_GLMEDGE;
} else if (tmpl_contains("<|{{ item['role'] }}|>") && tmpl_contains("<|begin_of_image|>")) {
return LLM_CHAT_TEMPLATE_GLMEDGE;
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
return LLM_CHAT_TEMPLATE_ZEPHYR;
} else if (tmpl_contains("bos_token + message['role']")) {
@ -149,9 +156,7 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_LLAMA_3;
} else if (tmpl_contains("[gMASK]sop")) {
// chatglm3-6b
return LLM_CHAT_TEMPLATE_CHATGML_3;
} else if (tmpl_contains("[gMASK]<sop>")) {
return LLM_CHAT_TEMPLATE_CHATGML_4;
return LLM_CHAT_TEMPLATE_CHATGLM_3;
} else if (tmpl_contains(LU8("<用户>"))) {
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
return LLM_CHAT_TEMPLATE_MINICPM;
@ -432,7 +437,7 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_3) {
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_3) {
// chatglm3-6b
ss << "[gMASK]" << "sop";
for (auto message : chat) {
@ -442,7 +447,7 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_4) {
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4 || tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
ss << "[gMASK]" << "<sop>";
for (auto message : chat) {
std::string role(message->role);
@ -451,14 +456,6 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
for (auto message : chat) {
@ -620,7 +617,23 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<|header_start|>assistant<|header_end|>\n\n";
}
} else {
} else if (tmpl == LLM_CHAT_TEMPLATE_SMOLVLM) {
// SmolVLM
ss << "<|im_start|>"; // uses <|im_start|> as BOS, but the actual content is NOT chatml
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "\n\n";
} else if (role == "user") {
ss << "User: " << message->content << "<end_of_utterance>\n";
} else {
ss << "Assistant: " << message->content << "<end_of_utterance>\n";
}
}
if (add_ass) {
ss << "Assistant:";
}
} else {
// template not supported
return -1;
}

View file

@ -29,8 +29,8 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_DEEPSEEK_3,
LLM_CHAT_TEMPLATE_COMMAND_R,
LLM_CHAT_TEMPLATE_LLAMA_3,
LLM_CHAT_TEMPLATE_CHATGML_3,
LLM_CHAT_TEMPLATE_CHATGML_4,
LLM_CHAT_TEMPLATE_CHATGLM_3,
LLM_CHAT_TEMPLATE_CHATGLM_4,
LLM_CHAT_TEMPLATE_GLMEDGE,
LLM_CHAT_TEMPLATE_MINICPM,
LLM_CHAT_TEMPLATE_EXAONE_3,
@ -41,6 +41,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_YANDEX,
LLM_CHAT_TEMPLATE_BAILING,
LLM_CHAT_TEMPLATE_LLAMA4,
LLM_CHAT_TEMPLATE_SMOLVLM,
LLM_CHAT_TEMPLATE_UNKNOWN,
};

View file

@ -114,7 +114,7 @@ llama_context::llama_context(
}
if (n_ctx_per_seq > hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_pre_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n",
LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n",
__func__, n_ctx_per_seq, hparams.n_ctx_train);
}
@ -469,8 +469,7 @@ ggml_tensor * llama_context::build_rope_shift(
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale,
ggml_backend_buffer * bbuf) const {
float freq_scale) const {
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
@ -492,17 +491,7 @@ ggml_tensor * llama_context::build_rope_shift(
// dequantize to f32 -> RoPE -> quantize back
tmp = ggml_cast(ctx0, cur, GGML_TYPE_F32);
if (bbuf) {
for (const auto & backend : backends) {
// Figure out which backend KV cache belongs to
if (ggml_backend_supports_buft(backend.get(), ggml_backend_buffer_get_type(bbuf))) {
ggml_backend_sched_set_tensor_backend(sched.get(), tmp, backend.get());
break;
}
}
}
tmp = ggml_rope_ext_inplace(ctx0, tmp,
tmp = ggml_rope_ext(ctx0, tmp,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
@ -582,7 +571,7 @@ llm_graph_result_ptr llama_context::build_kv_self_shift(
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
0);
ggml_tensor * cur = build_rope_shift(ctx0, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l, kv_self->k_l[il]->buffer);
ggml_tensor * cur = build_rope_shift(ctx0, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
ggml_build_forward_expand(gf, cur);
}
@ -1510,8 +1499,6 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
// set all ids as invalid (negative)
std::fill(output_ids.begin(), output_ids.end(), -1);
ggml_backend_buffer_clear(buf_output.get(), 0);
this->n_outputs = 0;
this->n_outputs_max = n_outputs_max;

View file

@ -172,8 +172,7 @@ private:
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale,
ggml_backend_buffer * bbuf) const;
float freq_scale) const;
llm_graph_result_ptr build_kv_self_shift(
ggml_context * ctx0,

View file

@ -55,7 +55,21 @@ void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
if (ubatch->pos && pos) {
const int64_t n_tokens = ubatch->n_tokens;
ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_token*ggml_element_size(pos));
if (ubatch->token && n_pos_per_embd == 4) {
// in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
// the 3 first dims are the same, and 4th dim is all 0
std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
// copy the first dimension
for (int i = 0; i < n_tokens; ++i) {
pos_data[ i] = ubatch->pos[i];
pos_data[ n_tokens + i] = ubatch->pos[i];
pos_data[2 * n_tokens + i] = ubatch->pos[i];
pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
}
ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
} else {
ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
}
}
}
@ -71,7 +85,7 @@ void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
) * f_attn_temp_scale + 1.0;
}
ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*n_pos_per_token*ggml_element_size(attn_scale));
ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
}
}
@ -598,7 +612,7 @@ llm_graph_context::llm_graph_context(const llm_graph_params & params) :
res (std::make_unique<llm_graph_result>()) {
}
int64_t llm_graph_context::n_pos_per_token() const {
int64_t llm_graph_context::n_pos_per_embd() const {
return arch == LLM_ARCH_QWEN2VL ? 4 : 1;
}
@ -809,6 +823,10 @@ ggml_tensor * llm_graph_context::build_ffn(
if (down) {
cur = build_lora_mm(down, cur);
if (arch == LLM_ARCH_GLM4) {
// GLM4 seems to have numerical issues with half-precision accumulators
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
}
}
if (down_b) {
@ -916,28 +934,35 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(up, "ffn_moe_up", il);
ggml_tensor * gate = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(gate, "ffn_moe_gate", il);
ggml_tensor * experts = nullptr;
if (gate_exps) {
cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(cur, "ffn_moe_gate", il);
} else {
cur = up;
}
switch (type_op) {
case LLM_FFN_SILU:
{
gate = ggml_silu(ctx0, gate);
cb(gate, "ffn_moe_silu", il);
cur = ggml_silu(ctx0, cur);
cb(cur, "ffn_moe_silu", il);
} break;
case LLM_FFN_GELU:
{
gate = ggml_gelu(ctx0, gate);
cb(gate, "ffn_moe_gelu", il);
cur = ggml_gelu(ctx0, cur);
cb(cur, "ffn_moe_gelu", il);
} break;
default:
GGML_ABORT("fatal error");
}
ggml_tensor * par = ggml_mul(ctx0, up, gate); // [n_ff, n_expert_used, n_tokens]
cb(par, "ffn_moe_gate_par", il);
if (gate_exps) {
cur = ggml_mul(ctx0, cur, up); // [n_ff, n_expert_used, n_tokens]
cb(cur, "ffn_moe_gate_par", il);
}
ggml_tensor * experts = build_lora_mm_id(down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
cb(experts, "ffn_moe_down", il);
if (!weight_before_ffn) {
@ -1020,11 +1045,11 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
}
ggml_tensor * llm_graph_context::build_inp_pos() const {
auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_token());
auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_embd());
auto & cur = inp->pos;
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_token());
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_embd());
ggml_set_input(cur);
res->add_input(std::move(inp));
@ -1033,11 +1058,12 @@ ggml_tensor * llm_graph_context::build_inp_pos() const {
}
ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
auto inp = std::make_unique<llm_graph_input_attn_temp>(n_pos_per_token(), hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
auto & cur = inp->attn_scale;
cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens*n_pos_per_token());
// this need to be 1x1xN for broadcasting
cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
ggml_set_input(cur);
res->add_input(std::move(inp));

View file

@ -91,29 +91,27 @@ public:
class llm_graph_input_pos : public llm_graph_input_i {
public:
llm_graph_input_pos(int64_t n_pos_per_token) : n_pos_per_token(n_pos_per_token) {}
llm_graph_input_pos(int64_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
virtual ~llm_graph_input_pos() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * pos = nullptr; // I32 [n_batch]
const int64_t n_pos_per_token = 1;
const int64_t n_pos_per_embd = 1;
};
// temperature tuning, used by llama4
class llm_graph_input_attn_temp : public llm_graph_input_i {
public:
llm_graph_input_attn_temp(int64_t n_pos_per_token, uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
: n_pos_per_token(n_pos_per_token), n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
llm_graph_input_attn_temp(uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
: n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
virtual ~llm_graph_input_attn_temp() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * attn_scale = nullptr; // F32 [n_batch]
const int64_t n_pos_per_token = 1;
const uint32_t n_attn_temp_floor_scale;
const float f_attn_temp_scale;
};
@ -430,7 +428,7 @@ struct llm_graph_context {
llm_graph_context(const llm_graph_params & params);
int64_t n_pos_per_token() const;
int64_t n_pos_per_embd() const;
void cb(ggml_tensor * cur, const char * name, int il) const;

View file

@ -72,6 +72,7 @@ struct llama_hparams {
float expert_weights_scale = 0.0;
bool expert_weights_norm = false;
uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
uint32_t moe_every_n_layers = 0;
float f_norm_eps;
float f_norm_rms_eps;

View file

@ -43,11 +43,13 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_770M: return "770M";
case LLM_TYPE_780M: return "780M";
case LLM_TYPE_0_5B: return "0.5B";
case LLM_TYPE_0_6B: return "0.6B";
case LLM_TYPE_1B: return "1B";
case LLM_TYPE_1_3B: return "1.3B";
case LLM_TYPE_1_4B: return "1.4B";
case LLM_TYPE_1_5B: return "1.5B";
case LLM_TYPE_1_6B: return "1.6B";
case LLM_TYPE_1_7B: return "1.7B";
case LLM_TYPE_1_8B: return "1.8B";
case LLM_TYPE_2B: return "2B";
case LLM_TYPE_2_8B: return "2.8B";
@ -66,6 +68,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_15B: return "15B";
case LLM_TYPE_16B: return "16B";
case LLM_TYPE_20B: return "20B";
case LLM_TYPE_27B: return "27B";
case LLM_TYPE_30B: return "30B";
case LLM_TYPE_32B: return "32B";
case LLM_TYPE_34B: return "34B";
@ -74,6 +77,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_65B: return "65B";
case LLM_TYPE_70B: return "70B";
case LLM_TYPE_236B: return "236B";
case LLM_TYPE_290B: return "290B";
case LLM_TYPE_314B: return "314B";
case LLM_TYPE_671B: return "671B";
case LLM_TYPE_SMALL: return "0.1B";
@ -88,10 +92,10 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_16x3_8B: return "16x3.8B";
case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
case LLM_TYPE_57B_A14B: return "57B.A14B";
case LLM_TYPE_27B: return "27B";
case LLM_TYPE_290B: return "290B";
case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
case LLM_TYPE_30B_A3B: return "30B.A3B";
case LLM_TYPE_235B_A22B: return "235B.A22B";
default: return "?B";
}
}
@ -709,10 +713,12 @@ void llama_model::load_hparams(llama_model_loader & ml) {
}
} break;
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
if (hparams.n_layer == 12 && hparams.n_embd == 768) {
type = LLM_TYPE_137M;
@ -805,6 +811,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
case 40: type = LLM_TYPE_14B; break;
case 64: type = LLM_TYPE_32B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@ -814,6 +824,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 48: type = LLM_TYPE_30B_A3B; break;
case 94: type = LLM_TYPE_235B_A22B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@ -2133,6 +2145,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
} break;
case LLM_ARCH_BERT:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
@ -2166,20 +2179,31 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
}
if (arch == LLM_ARCH_NOMIC_BERT_MOE) {
layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
}
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
if (arch == LLM_ARCH_BERT) {
if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
} else {
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
if (arch == LLM_ARCH_BERT || arch == LLM_ARCH_NOMIC_BERT_MOE) {
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
} else {
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
}
}
layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
@ -6074,6 +6098,11 @@ struct llm_build_bert : public llm_graph_context {
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
@ -6126,13 +6155,29 @@ struct llm_build_bert : public llm_graph_context {
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
if (model.arch == LLM_ARCH_BERT) {
if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
// MoE branch
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
nullptr,
model.layers[il].ffn_down_exps,
nullptr,
hparams.n_expert,
hparams.n_expert_used,
LLM_FFN_GELU,
false, false,
0.0f,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
cb(cur, "ffn_moe_out", il);
} else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
} else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
@ -6140,6 +6185,7 @@ struct llm_build_bert : public llm_graph_context {
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
@ -6147,8 +6193,8 @@ struct llm_build_bert : public llm_graph_context {
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cb(cur, "ffn_out", il);
// attentions bypass the intermediate layer
cur = ggml_add(ctx0, cur, ffn_inp);
@ -13349,6 +13395,7 @@ llm_graph_result_ptr llama_model::build_graph(
case LLM_ARCH_BERT:
case LLM_ARCH_JINA_BERT_V2:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
{
llm = std::make_unique<llm_build_bert>(*this, params, gf);
} break;
@ -13714,6 +13761,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_DBRX:
case LLM_ARCH_BERT:
case LLM_ARCH_NOMIC_BERT:
case LLM_ARCH_NOMIC_BERT_MOE:
case LLM_ARCH_STABLELM:
case LLM_ARCH_BITNET:
case LLM_ARCH_QWEN:

View file

@ -40,11 +40,13 @@ enum llm_type {
LLM_TYPE_770M,
LLM_TYPE_780M,
LLM_TYPE_0_5B,
LLM_TYPE_0_6B,
LLM_TYPE_1B,
LLM_TYPE_1_3B,
LLM_TYPE_1_4B,
LLM_TYPE_1_5B,
LLM_TYPE_1_6B,
LLM_TYPE_1_7B,
LLM_TYPE_1_8B,
LLM_TYPE_2B,
LLM_TYPE_2_8B,
@ -64,6 +66,7 @@ enum llm_type {
LLM_TYPE_16B,
LLM_TYPE_20B,
LLM_TYPE_22B,
LLM_TYPE_27B,
LLM_TYPE_30B,
LLM_TYPE_32B,
LLM_TYPE_34B,
@ -73,6 +76,7 @@ enum llm_type {
LLM_TYPE_70B,
LLM_TYPE_90B,
LLM_TYPE_236B,
LLM_TYPE_290B,
LLM_TYPE_314B,
LLM_TYPE_671B,
LLM_TYPE_SMALL,
@ -87,10 +91,10 @@ enum llm_type {
LLM_TYPE_16x3_8B,
LLM_TYPE_10B_128x3_66B,
LLM_TYPE_57B_A14B,
LLM_TYPE_27B,
LLM_TYPE_290B,
LLM_TYPE_17B_16E, // llama4 Scout
LLM_TYPE_17B_128E, // llama4 Maverick
LLM_TYPE_30B_A3B,
LLM_TYPE_235B_A22B,
};
struct llama_layer_posnet {

View file

@ -232,7 +232,7 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
// }
if (k <= 0) {
k = cur_p->size;
return;
}
k = std::min(k, (int) cur_p->size);
@ -298,6 +298,7 @@ static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k)
}
cur_p->sorted = true;
}
cur_p->size = k;
}

View file

@ -1497,7 +1497,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "llama3" ||
tokenizer_pre == "llama-v3" ||
tokenizer_pre == "llama-bpe"||
tokenizer_pre == "falcon3") {
tokenizer_pre == "falcon3" ||
tokenizer_pre == "pixtral") {
pre_type = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
ignore_merges = true;
add_bos = true;

View file

@ -85,7 +85,7 @@ index e2617b06..242e50a7 100644
/**
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index a7febef7..31750b6f 100644
index 9fb2134f..04ce764e 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -534,6 +534,7 @@ struct ggml_backend_cuda_buffer_context {
@ -125,10 +125,10 @@ index 50579227..2799a0a5 100644
static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index 266d8af4..12886cd3 100644
index d92392ed..425524d0 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -4759,6 +4759,7 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
@@ -5077,6 +5077,7 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
}
free(ctx);
@ -149,10 +149,10 @@ index 05a2f4e6..392cc18d 100644
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-rpc/ggml-rpc.cpp b/ggml/src/ggml-rpc/ggml-rpc.cpp
index a0667b7d..bd83adc5 100644
index 140a775f..e33c4ba0 100644
--- a/ggml/src/ggml-rpc/ggml-rpc.cpp
+++ b/ggml/src/ggml-rpc/ggml-rpc.cpp
@@ -468,6 +468,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@@ -477,6 +477,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
GGML_ASSERT(status);
delete ctx;
@ -161,10 +161,10 @@ index a0667b7d..bd83adc5 100644
static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp
index 1de34c96..4600f61e 100644
index 66b6f2cc..e3e6deae 100644
--- a/ggml/src/ggml-sycl/ggml-sycl.cpp
+++ b/ggml/src/ggml-sycl/ggml-sycl.cpp
@@ -316,6 +316,7 @@ ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
@@ -317,6 +317,7 @@ ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
ggml_sycl_set_device(ctx->device);
delete ctx;
@ -172,7 +172,7 @@ index 1de34c96..4600f61e 100644
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@@ -761,6 +762,7 @@ struct ggml_backend_sycl_split_buffer_context {
@@ -762,6 +763,7 @@ struct ggml_backend_sycl_split_buffer_context {
static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
delete ctx;
@ -180,7 +180,7 @@ index 1de34c96..4600f61e 100644
}
static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
@@ -1095,6 +1097,7 @@ static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_
@@ -1096,6 +1098,7 @@ static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_
static void ggml_backend_sycl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_sycl_host_free(buffer->context);
@ -189,10 +189,10 @@ index 1de34c96..4600f61e 100644
static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index 39f3cd34..c569a8a5 100644
index c0bdb9e1..03d03064 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -8653,6 +8653,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@@ -8660,6 +8660,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
ggml_vk_destroy_buffer(ctx->dev_buffer);
delete ctx;
@ -200,7 +200,7 @@ index 39f3cd34..c569a8a5 100644
}
static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
@@ -8796,6 +8797,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
@@ -8803,6 +8804,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
ggml_vk_host_free(vk_instance.devices[0], buffer->context);

View file

@ -10,7 +10,7 @@ logs instead of throwing an error
1 file changed, 3 insertions(+), 11 deletions(-)
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index 48060517..a35b498c 100644
index 50ded286..a9ee9f03 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -1491,16 +1491,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
@ -31,7 +31,7 @@ index 48060517..a35b498c 100644
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if (
tokenizer_pre == "llama3" ||
@@ -1634,7 +1625,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
@@ -1635,7 +1626,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE;
clean_spaces = false;
} else {

View file

@ -11,10 +11,10 @@ instead of forcing one or the error
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index 983385f8..32f59819 100644
index 5a2eef9b..9c1fe93f 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -1236,7 +1236,7 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1225,7 +1225,7 @@ int llama_context::decode(llama_batch & inp_batch) {
int64_t n_outputs_all = 0;
// count outputs
@ -23,7 +23,7 @@ index 983385f8..32f59819 100644
for (uint32_t i = 0; i < n_tokens_all; ++i) {
n_outputs_all += batch.logits[i] != 0;
}
@@ -1348,7 +1348,7 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1337,7 +1337,7 @@ int llama_context::decode(llama_batch & inp_batch) {
// ggml_graph_dump_dot(gf, NULL, "llama.dot");
//}
@ -32,7 +32,7 @@ index 983385f8..32f59819 100644
auto * t_embd = cparams.embeddings ? res->get_embd() : nullptr;
if (t_embd && res->get_embd_pooled()) {
@@ -1492,7 +1492,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
@@ -1481,7 +1481,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead

View file

@ -10,12 +10,12 @@ filesystems for paths that include wide characters
1 file changed, 39 insertions(+)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 75970615..d57b4bd6 100644
index ad3e7df1..b3218c78 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -29,6 +29,19 @@
#include <limits>
@@ -30,6 +30,19 @@
#include <array>
#include <numeric>
+#if defined(_WIN32)
+#define WIN32_LEAN_AND_MEAN
@ -33,7 +33,7 @@ index 75970615..d57b4bd6 100644
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
//#define CLIP_DEBUG_FUNCTIONS
@@ -1430,7 +1443,29 @@ struct clip_model_loader {
@@ -1971,7 +1984,29 @@ struct clip_model_loader {
{
std::vector<uint8_t> read_buf;
@ -63,7 +63,7 @@ index 75970615..d57b4bd6 100644
if (!fin) {
throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
}
@@ -1457,7 +1492,11 @@ struct clip_model_loader {
@@ -1998,7 +2033,11 @@ struct clip_model_loader {
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}

View file

@ -15,10 +15,10 @@ adds support for the Solar Pro architecture
7 files changed, 248 insertions(+)
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index 62e1480b..f754bc8f 100644
index f2bc8ca7..5ab3f572 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -68,6 +68,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
@@ -69,6 +69,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_GRANITE, "granite" },
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
{ LLM_ARCH_CHAMELEON, "chameleon" },
@ -26,7 +26,7 @@ index 62e1480b..f754bc8f 100644
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
{ LLM_ARCH_PLM, "plm" },
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
@@ -140,6 +141,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
@@ -142,6 +143,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
@ -34,7 +34,7 @@ index 62e1480b..f754bc8f 100644
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
@@ -1482,6 +1484,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
@@ -1502,6 +1504,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
},
},
@ -59,7 +59,7 @@ index 62e1480b..f754bc8f 100644
{
LLM_ARCH_WAVTOKENIZER_DEC,
{
@@ -1660,6 +1680,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
@@ -1680,6 +1700,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_FFN_EXP_PROBS_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
// this tensor is loaded for T5, but never used
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
@ -68,10 +68,10 @@ index 62e1480b..f754bc8f 100644
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
diff --git a/src/llama-arch.h b/src/llama-arch.h
index 98ca00a1..439aaeab 100644
index 41a023da..525c1b7d 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -72,6 +72,7 @@ enum llm_arch {
@@ -73,6 +73,7 @@ enum llm_arch {
LLM_ARCH_GRANITE,
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_CHAMELEON,
@ -79,7 +79,7 @@ index 98ca00a1..439aaeab 100644
LLM_ARCH_WAVTOKENIZER_DEC,
LLM_ARCH_PLM,
LLM_ARCH_BAILINGMOE,
@@ -144,6 +145,7 @@ enum llm_kv {
@@ -146,6 +147,7 @@ enum llm_kv {
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
@ -87,7 +87,7 @@ index 98ca00a1..439aaeab 100644
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
@@ -344,6 +346,7 @@ enum llm_tensor {
@@ -346,6 +348,7 @@ enum llm_tensor {
LLM_TENSOR_ENC_OUTPUT_NORM,
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
@ -115,7 +115,7 @@ index 90dfe7a7..8a667960 100644
if (il < n_layer) {
return n_swa > 0 && n_swa_pattern > 0 && il % n_swa_pattern < (n_swa_pattern - 1);
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
index 80fcd65d..6e278945 100644
index 7ee6a5b7..48dce407 100644
--- a/src/llama-hparams.h
+++ b/src/llama-hparams.h
@@ -55,6 +55,8 @@ struct llama_hparams {
@ -127,7 +127,7 @@ index 80fcd65d..6e278945 100644
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
@@ -153,6 +155,9 @@ struct llama_hparams {
@@ -154,6 +156,9 @@ struct llama_hparams {
// dimension of the recurrent state embeddings
uint32_t n_embd_v_s() const;
@ -150,10 +150,10 @@ index ea73a8a7..a012aeae 100644
llama_model_loader::llama_model_loader(
const std::string & fname,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index 6b7bfecf..aba42819 100644
index 822e2bb2..572378c9 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -1374,6 +1374,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -1386,6 +1386,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@ -175,7 +175,7 @@ index 6b7bfecf..aba42819 100644
case LLM_ARCH_WAVTOKENIZER_DEC:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -3717,6 +3732,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -3741,6 +3756,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
@ -210,7 +210,7 @@ index 6b7bfecf..aba42819 100644
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
@@ -12296,6 +12339,165 @@ struct llm_build_chameleon : public llm_graph_context {
@@ -12342,6 +12385,165 @@ struct llm_build_chameleon : public llm_graph_context {
}
};
@ -376,7 +376,7 @@ index 6b7bfecf..aba42819 100644
struct llm_build_wavtokenizer_dec : public llm_graph_context {
llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
ggml_tensor * cur;
@@ -13045,6 +13247,10 @@ llm_graph_result_ptr llama_model::build_graph(
@@ -13092,6 +13294,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
} break;
@ -387,7 +387,7 @@ index 6b7bfecf..aba42819 100644
case LLM_ARCH_WAVTOKENIZER_DEC:
{
llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
@@ -13191,6 +13397,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
@@ -13238,6 +13444,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:
@ -396,18 +396,18 @@ index 6b7bfecf..aba42819 100644
return LLAMA_ROPE_TYPE_NORM;
diff --git a/src/llama-model.h b/src/llama-model.h
index fd82d106..5865d5e9 100644
index 95eca002..856e6042 100644
--- a/src/llama-model.h
+++ b/src/llama-model.h
@@ -62,6 +62,7 @@ enum llm_type {
@@ -64,6 +64,7 @@ enum llm_type {
LLM_TYPE_15B,
LLM_TYPE_16B,
LLM_TYPE_20B,
+ LLM_TYPE_22B,
LLM_TYPE_27B,
LLM_TYPE_30B,
LLM_TYPE_32B,
LLM_TYPE_34B,
@@ -307,6 +308,8 @@ struct llama_layer {
@@ -311,6 +312,8 @@ struct llama_layer {
struct ggml_tensor * ffn_up_scale = nullptr;
struct ggml_tensor * ffn_down_scale = nullptr;

View file

@ -5,7 +5,6 @@ Subject: [PATCH] add mllama support
adds support for the llama 3.2 vision architecture
---
examples/llava/gemma3-cli.cpp | 3 +-
examples/llava/llava.cpp | 5 +-
examples/llava/mtmd.cpp | 6 +-
ggml/src/ggml-backend-reg.cpp | 6 +-
@ -25,34 +24,13 @@ adds support for the llama 3.2 vision architecture
src/llama-model.cpp | 309 +++++++++++++++++++++++++++++++++-
src/llama-model.h | 12 ++
src/llama-quant.cpp | 4 +-
20 files changed, 475 insertions(+), 22 deletions(-)
19 files changed, 473 insertions(+), 21 deletions(-)
diff --git a/examples/llava/gemma3-cli.cpp b/examples/llava/gemma3-cli.cpp
index 3d566475..654d1358 100644
--- a/examples/llava/gemma3-cli.cpp
+++ b/examples/llava/gemma3-cli.cpp
@@ -106,7 +106,7 @@ struct decode_embd_batch {
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
- decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
+ decode_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
@@ -118,6 +118,7 @@ struct decode_embd_batch {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
+ /*n_embd =*/ n_embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp
index 03a22cbb..5eb40bcd 100644
index c00d16ae..bab027b5 100644
--- a/examples/llava/llava.cpp
+++ b/examples/llava/llava.cpp
@@ -456,7 +456,7 @@ struct llava_embd_batch {
@@ -457,7 +457,7 @@ struct llava_embd_batch {
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
@ -61,7 +39,7 @@ index 03a22cbb..5eb40bcd 100644
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
@@ -468,6 +468,7 @@ struct llava_embd_batch {
@@ -469,6 +469,7 @@ struct llava_embd_batch {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
@ -69,7 +47,7 @@ index 03a22cbb..5eb40bcd 100644
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
@@ -491,7 +492,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
@@ -492,7 +493,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
n_eval = n_batch;
}
float * embd = image_embed->embed+i*n_embd;
@ -79,19 +57,19 @@ index 03a22cbb..5eb40bcd 100644
LOG_ERR("%s : failed to eval\n", __func__);
return false;
diff --git a/examples/llava/mtmd.cpp b/examples/llava/mtmd.cpp
index 3fd5bebc..f0cec596 100644
index 7081fd73..c14ac501 100644
--- a/examples/llava/mtmd.cpp
+++ b/examples/llava/mtmd.cpp
@@ -233,7 +233,7 @@ struct decode_embd_batch {
@@ -476,7 +476,7 @@ struct decode_embd_batch {
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
- decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
+ decode_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
- decode_embd_batch(float * embd, int32_t n_tokens, int n_pos_per_embd, int n_mmproj_embd) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) {
+ decode_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) {
pos .resize(n_tokens * n_pos_per_embd);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
@@ -245,6 +245,7 @@ struct decode_embd_batch {
@@ -487,6 +487,7 @@ struct decode_embd_batch {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
@ -99,16 +77,16 @@ index 3fd5bebc..f0cec596 100644
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
@@ -311,7 +312,8 @@ int32_t mtmd_helper_eval(mtmd_context * ctx,
int32_t n_tokens = mtmd_image_tokens_get_n_tokens(chunk.tokens_image.get());
@@ -610,7 +611,8 @@ int32_t mtmd_helper_eval(mtmd_context * ctx,
int32_t i_batch = 0;
int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
float * embd = mtmd_get_output_embd(ctx);
- decode_embd_batch batch_img(embd, n_tokens, n_past, 0);
- decode_embd_batch batch_embd(embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
+ int n_embd = llama_model_n_embd(llama_get_model(lctx));
+ decode_embd_batch batch_img(embd, n_embd, n_tokens, n_past, 0);
int64_t t1 = ggml_time_ms();
ret = llama_decode(lctx, batch_img.batch);
if (ret != 0) {
+ decode_embd_batch batch_embd(embd, n_embd, n_tokens, n_past, 0);
const int nx = mtmd_image_tokens_get_nx(chunk.tokens_image.get());
const int ny = mtmd_image_tokens_get_ny(chunk.tokens_image.get());
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 405d8e31..82ae1b5b 100644
--- a/ggml/src/ggml-backend-reg.cpp
@ -127,10 +105,10 @@ index 405d8e31..82ae1b5b 100644
register_backend(ggml_backend_rpc_reg());
#endif
diff --git a/include/llama.h b/include/llama.h
index 5657fbf0..f91896e4 100644
index 06c56395..f1628e88 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -255,6 +255,7 @@ extern "C" {
@@ -256,6 +256,7 @@ extern "C" {
llama_token * token;
float * embd;
@ -138,7 +116,7 @@ index 5657fbf0..f91896e4 100644
llama_pos * pos;
int32_t * n_seq_id;
llama_seq_id ** seq_id;
@@ -357,6 +358,7 @@ extern "C" {
@@ -358,6 +359,7 @@ extern "C" {
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
bool no_perf; // whether to measure performance timings
@ -146,7 +124,7 @@ index 5657fbf0..f91896e4 100644
// Abort callback
// if it returns true, execution of llama_decode() will be aborted
@@ -458,6 +460,10 @@ extern "C" {
@@ -459,6 +461,10 @@ extern "C" {
struct llama_context_params params),
"use llama_init_from_model instead");
@ -158,7 +136,7 @@ index 5657fbf0..f91896e4 100644
LLAMA_API void llama_free(struct llama_context * ctx);
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index f754bc8f..0568565f 100644
index 5ab3f572..eb7b5325 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -6,6 +6,7 @@
@ -169,7 +147,7 @@ index f754bc8f..0568565f 100644
{ LLM_ARCH_LLAMA4, "llama4" },
{ LLM_ARCH_DECI, "deci" },
{ LLM_ARCH_FALCON, "falcon" },
@@ -142,6 +143,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
@@ -144,6 +145,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
@ -177,7 +155,7 @@ index f754bc8f..0568565f 100644
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
@@ -271,6 +273,40 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
@@ -273,6 +275,40 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
@ -218,7 +196,7 @@ index f754bc8f..0568565f 100644
{
LLM_ARCH_DECI,
{
@@ -1681,6 +1717,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
@@ -1701,6 +1737,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
// this tensor is loaded for T5, but never used
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
{LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
@ -234,7 +212,7 @@ index f754bc8f..0568565f 100644
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
diff --git a/src/llama-arch.h b/src/llama-arch.h
index 439aaeab..6a989034 100644
index 525c1b7d..bc8a4f0b 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -11,6 +11,7 @@
@ -245,7 +223,7 @@ index 439aaeab..6a989034 100644
LLM_ARCH_DECI,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
@@ -146,6 +147,7 @@ enum llm_kv {
@@ -148,6 +149,7 @@ enum llm_kv {
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
@ -253,7 +231,7 @@ index 439aaeab..6a989034 100644
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
@@ -347,6 +349,14 @@ enum llm_tensor {
@@ -349,6 +351,14 @@ enum llm_tensor {
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
LLM_TENSOR_BSKCN_TV,
@ -297,10 +275,10 @@ index 01d5ca57..8682b0e6 100644
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
}
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index 32f59819..0343ba8a 100644
index 9c1fe93f..cd06ad91 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -862,7 +862,7 @@ float * llama_context::get_logits_ith(int32_t i) {
@@ -851,7 +851,7 @@ float * llama_context::get_logits_ith(int32_t i) {
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs));
}
@ -309,7 +287,7 @@ index 32f59819..0343ba8a 100644
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
@@ -983,6 +983,10 @@ void llama_context::set_warmup(bool value) {
@@ -972,6 +972,10 @@ void llama_context::set_warmup(bool value) {
cparams.warmup = value;
}
@ -320,7 +298,7 @@ index 32f59819..0343ba8a 100644
void llama_context::set_adapter_lora(
llama_adapter_lora * adapter,
float scale) {
@@ -1058,7 +1062,7 @@ int llama_context::encode(llama_batch & inp_batch) {
@@ -1047,7 +1051,7 @@ int llama_context::encode(llama_batch & inp_batch) {
const int64_t n_embd = hparams.n_embd;
@ -329,7 +307,7 @@ index 32f59819..0343ba8a 100644
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
@@ -1198,10 +1202,9 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1187,10 +1191,9 @@ int llama_context::decode(llama_batch & inp_batch) {
const llama_batch & batch = batch_allocr.batch;
@ -341,7 +319,7 @@ index 32f59819..0343ba8a 100644
const int64_t n_tokens_all = batch.n_tokens;
const int64_t n_embd = hparams.n_embd;
@@ -1249,7 +1252,7 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1238,7 +1241,7 @@ int llama_context::decode(llama_batch & inp_batch) {
const bool logits_all = n_outputs_all == n_tokens_all;
@ -350,7 +328,7 @@ index 32f59819..0343ba8a 100644
/* simple_split */ !kv_self->recurrent,
/* logits_all */ logits_all);
@@ -1483,12 +1486,11 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1472,12 +1475,11 @@ int llama_context::decode(llama_batch & inp_batch) {
int32_t llama_context::output_reserve(int32_t n_outputs) {
const auto & hparams = model.hparams;
@ -364,7 +342,7 @@ index 32f59819..0343ba8a 100644
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead
@@ -1558,7 +1560,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
@@ -1545,7 +1547,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
void llama_context::output_reorder() {
auto & out_ids = sbatch.out_ids;
if (!out_ids.empty()) {
@ -373,7 +351,7 @@ index 32f59819..0343ba8a 100644
const uint32_t n_embd = model.hparams.n_embd;
GGML_ASSERT((size_t) n_outputs == out_ids.size());
@@ -2065,7 +2067,7 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
@@ -2052,7 +2054,7 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
{
LLAMA_LOG_DEBUG("%s: - writing logits\n", __func__);
@ -382,7 +360,7 @@ index 32f59819..0343ba8a 100644
io.write(&logits_size, sizeof(logits_size));
@@ -2248,6 +2250,7 @@ llama_context_params llama_context_default_params() {
@@ -2235,6 +2237,7 @@ llama_context_params llama_context_default_params() {
/*.offload_kqv =*/ true,
/*.flash_attn =*/ false,
/*.no_perf =*/ true,
@ -390,7 +368,7 @@ index 32f59819..0343ba8a 100644
/*.abort_callback =*/ nullptr,
/*.abort_callback_data =*/ nullptr,
};
@@ -2375,6 +2378,10 @@ void llama_set_warmup(llama_context * ctx, bool warmup) {
@@ -2362,6 +2365,10 @@ void llama_set_warmup(llama_context * ctx, bool warmup) {
ctx->set_warmup(warmup);
}
@ -402,7 +380,7 @@ index 32f59819..0343ba8a 100644
ctx->synchronize();
}
diff --git a/src/llama-context.h b/src/llama-context.h
index 04facb54..baa03276 100644
index 5457f077..a50c4afa 100644
--- a/src/llama-context.h
+++ b/src/llama-context.h
@@ -65,6 +65,7 @@ struct llama_context {
@ -426,10 +404,10 @@ index 30e550f0..85ad91b9 100644
enum llama_pooling_type pooling_type;
diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp
index a85e9728..d740c120 100644
index fabb9ca2..b67216a4 100644
--- a/src/llama-graph.cpp
+++ b/src/llama-graph.cpp
@@ -546,6 +546,12 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
@@ -560,6 +560,12 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
}
}
@ -442,7 +420,7 @@ index a85e9728..d740c120 100644
//
// llm_graph_context
//
@@ -1506,6 +1512,25 @@ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
@@ -1532,6 +1538,25 @@ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
}
@ -469,7 +447,7 @@ index a85e9728..d740c120 100644
llm_graph_input_attn_cross * inp,
ggml_cgraph * gf,
diff --git a/src/llama-graph.h b/src/llama-graph.h
index d192dc14..260a2af2 100644
index d0c8d321..0fe18150 100644
--- a/src/llama-graph.h
+++ b/src/llama-graph.h
@@ -86,6 +86,7 @@ public:
@ -480,7 +458,7 @@ index d192dc14..260a2af2 100644
};
class llm_graph_input_pos : public llm_graph_input_i {
@@ -285,6 +286,16 @@ public:
@@ -283,6 +284,16 @@ public:
const llama_cross * cross = nullptr;
};
@ -497,7 +475,7 @@ index d192dc14..260a2af2 100644
//
// llm_graph_result
//
@@ -493,6 +504,7 @@ struct llm_graph_context {
@@ -491,6 +502,7 @@ struct llm_graph_context {
ggml_tensor * build_inp_cls() const;
ggml_tensor * build_inp_s_copy() const;
ggml_tensor * build_inp_s_mask() const;
@ -518,7 +496,7 @@ index 8a667960..6a02de03 100644
+ return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
+}
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
index 6e278945..c8a34d52 100644
index 48dce407..b6fc7e6d 100644
--- a/src/llama-hparams.h
+++ b/src/llama-hparams.h
@@ -2,6 +2,8 @@
@ -546,7 +524,7 @@ index 6e278945..c8a34d52 100644
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
@@ -158,6 +162,9 @@ struct llama_hparams {
@@ -159,6 +163,9 @@ struct llama_hparams {
// Block skip connection
bool n_bskcn(uint32_t n, uint32_t il) const;
@ -593,10 +571,10 @@ index a012aeae..2e11507d 100644
bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) {
const int kid = gguf_find_key(meta.get(), key.c_str());
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index aba42819..d051696c 100644
index 572378c9..9d099f11 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -419,6 +419,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -423,6 +423,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
// get general kv
ml.get_key(LLM_KV_GENERAL_NAME, name, false);
@ -604,7 +582,7 @@ index aba42819..d051696c 100644
// everything past this point is not vocab-related
if (hparams.vocab_only) {
@@ -430,6 +431,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -434,6 +435,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
@ -612,7 +590,7 @@ index aba42819..d051696c 100644
if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
@@ -453,9 +455,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -457,9 +459,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
@ -624,7 +602,7 @@ index aba42819..d051696c 100644
// n_head_kv is optional, default to n_head
hparams.n_head_kv_arr = hparams.n_head_arr;
@@ -508,7 +512,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -512,7 +516,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
@ -633,7 +611,7 @@ index aba42819..d051696c 100644
if (hparams.n_rot != hparams.n_embd_head_k) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
}
@@ -571,6 +575,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -575,6 +579,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.use_kq_norm = false;
}
} break;
@ -650,7 +628,7 @@ index aba42819..d051696c 100644
case LLM_ARCH_DECI:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -1550,7 +1564,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -1562,7 +1576,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
const int64_t n_embd_head_v = hparams.n_embd_head_v;
const int64_t n_ff = hparams.n_ff();
const int64_t n_embd_gqa = n_embd_v_gqa;
@ -659,7 +637,7 @@ index aba42819..d051696c 100644
const int64_t n_token_types = vocab.n_token_types();
const int64_t n_rot = hparams.n_rot;
const int64_t n_expert = hparams.n_expert;
@@ -1803,6 +1817,52 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -1815,6 +1829,52 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
}
} break;
@ -712,7 +690,7 @@ index aba42819..d051696c 100644
case LLM_ARCH_DECI:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -4683,6 +4743,246 @@ struct llm_build_llama : public llm_graph_context {
@@ -4707,6 +4767,246 @@ struct llm_build_llama : public llm_graph_context {
}
};
@ -959,7 +937,7 @@ index aba42819..d051696c 100644
struct llm_build_deci : public llm_graph_context {
llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -13017,6 +13317,10 @@ llm_graph_result_ptr llama_model::build_graph(
@@ -13063,6 +13363,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_llama>(*this, params, gf);
} break;
@ -970,7 +948,7 @@ index aba42819..d051696c 100644
case LLM_ARCH_DECI:
{
llm = std::make_unique<llm_build_deci>(*this, params, gf);
@@ -13377,6 +13681,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
@@ -13424,6 +13728,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA:
case LLM_ARCH_LLAMA4:
@ -979,7 +957,7 @@ index aba42819..d051696c 100644
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER:
diff --git a/src/llama-model.h b/src/llama-model.h
index 5865d5e9..72bab5be 100644
index 856e6042..6be91282 100644
--- a/src/llama-model.h
+++ b/src/llama-model.h
@@ -11,6 +11,7 @@
@ -990,15 +968,15 @@ index 5865d5e9..72bab5be 100644
struct llama_cparams;
struct llama_ubatch;
@@ -70,6 +71,7 @@ enum llm_type {
@@ -73,6 +74,7 @@ enum llm_type {
LLM_TYPE_40B,
LLM_TYPE_65B,
LLM_TYPE_70B,
+ LLM_TYPE_90B,
LLM_TYPE_236B,
LLM_TYPE_290B,
LLM_TYPE_314B,
LLM_TYPE_671B,
@@ -310,6 +312,16 @@ struct llama_layer {
@@ -314,6 +316,16 @@ struct llama_layer {
struct ggml_tensor * bskcn_tv = nullptr;

View file

@ -18,10 +18,10 @@ adds the unpad operator to GGML
10 files changed, 223 insertions(+), 2 deletions(-)
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
index 8fcc16df..d19fc167 100644
index 1b8603e7..53ef31b2 100644
--- a/ggml/include/ggml.h
+++ b/ggml/include/ggml.h
@@ -488,6 +488,7 @@ extern "C" {
@@ -489,6 +489,7 @@ extern "C" {
GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_PAD,
GGML_OP_PAD_REFLECT_1D,
@ -29,7 +29,7 @@ index 8fcc16df..d19fc167 100644
GGML_OP_ARANGE,
GGML_OP_TIMESTEP_EMBEDDING,
GGML_OP_ARGSORT,
@@ -1757,6 +1758,15 @@ extern "C" {
@@ -1777,6 +1778,15 @@ extern "C" {
int p0,
int p1);
@ -46,10 +46,10 @@ index 8fcc16df..d19fc167 100644
// timesteps: [N,]
// return: [N, dim]
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
index 50400328..432942bf 100644
index 64405449..34624cca 100644
--- a/ggml/src/ggml-cpu/ggml-cpu.c
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
@@ -1960,6 +1960,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
@@ -1964,6 +1964,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_pad_reflect_1d(params, tensor);
} break;
@ -60,7 +60,7 @@ index 50400328..432942bf 100644
case GGML_OP_ARANGE:
{
ggml_compute_forward_arange(params, tensor);
@@ -2282,6 +2286,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
@@ -2287,6 +2291,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_PAD_REFLECT_1D:
@ -69,10 +69,10 @@ index 50400328..432942bf 100644
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT:
diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp
index 6050147b..66b8da68 100644
index 7413192b..becdae07 100644
--- a/ggml/src/ggml-cpu/ops.cpp
+++ b/ggml/src/ggml-cpu/ops.cpp
@@ -6531,6 +6531,61 @@ void ggml_compute_forward_pad_reflect_1d(
@@ -6703,6 +6703,61 @@ void ggml_compute_forward_pad_reflect_1d(
}
}
@ -135,10 +135,10 @@ index 6050147b..66b8da68 100644
static void ggml_compute_forward_arange_f32(
diff --git a/ggml/src/ggml-cpu/ops.h b/ggml/src/ggml-cpu/ops.h
index 410a3720..3eca1cf8 100644
index dc081b9e..a7125555 100644
--- a/ggml/src/ggml-cpu/ops.h
+++ b/ggml/src/ggml-cpu/ops.h
@@ -71,6 +71,7 @@ void ggml_compute_forward_pool_2d_back(const struct ggml_compute_params * params
@@ -72,6 +72,7 @@ void ggml_compute_forward_pool_2d_back(const struct ggml_compute_params * params
void ggml_compute_forward_upscale(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pad(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pad_reflect_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
@ -147,10 +147,10 @@ index 410a3720..3eca1cf8 100644
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index 31750b6f..0fef9522 100644
index 04ce764e..491acccb 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -2246,6 +2246,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
@@ -2223,6 +2223,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_PAD:
ggml_cuda_op_pad(ctx, dst);
break;
@ -160,7 +160,7 @@ index 31750b6f..0fef9522 100644
case GGML_OP_ARANGE:
ggml_cuda_op_arange(ctx, dst);
break;
@@ -3222,6 +3225,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
@@ -3197,6 +3200,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_PAD:
@ -233,7 +233,7 @@ index 8fd386b0..e2ededc3 100644
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+void ggml_cuda_op_unpad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index 12886cd3..b2e95a66 100644
index 425524d0..112abef6 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -341,6 +341,7 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte
@ -244,7 +244,7 @@ index 12886cd3..b2e95a66 100644
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
@@ -1020,6 +1021,7 @@ @implementation GGMLMetalClass
@@ -1277,6 +1278,7 @@ @implementation GGMLMetalClass
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32, pad_reflect_1d_f32, true);
@ -252,7 +252,7 @@ index 12886cd3..b2e95a66 100644
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
@@ -1384,6 +1386,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
@@ -1647,6 +1649,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_POOL_2D:
case GGML_OP_PAD:
case GGML_OP_PAD_REFLECT_1D:
@ -260,7 +260,7 @@ index 12886cd3..b2e95a66 100644
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT:
case GGML_OP_LEAKY_RELU:
@@ -3731,6 +3734,36 @@ static void ggml_metal_encode_node(
@@ -4047,6 +4050,36 @@ static bool ggml_metal_encode_node(
const int nth = MIN(1024, ne0);
@ -298,7 +298,7 @@ index 12886cd3..b2e95a66 100644
} break;
case GGML_OP_ARANGE:
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
index 8d6e99e6..71f0f97f 100644
index 9f4147e9..6ceb3cef 100644
--- a/ggml/src/ggml-metal/ggml-metal.metal
+++ b/ggml/src/ggml-metal/ggml-metal.metal
@@ -2975,6 +2975,51 @@ kernel void kernel_pad_reflect_1d_f32(
@ -354,10 +354,10 @@ index 8d6e99e6..71f0f97f 100644
device char * dst,
constant ggml_metal_kargs_arange & args,
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
index 950772c7..2276b631 100644
index 7654ae17..3c57aff8 100644
--- a/ggml/src/ggml.c
+++ b/ggml/src/ggml.c
@@ -963,6 +963,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
@@ -923,6 +923,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"UPSCALE",
"PAD",
"PAD_REFLECT_1D",
@ -365,16 +365,16 @@ index 950772c7..2276b631 100644
"ARANGE",
"TIMESTEP_EMBEDDING",
"ARGSORT",
@@ -993,7 +994,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
@@ -953,7 +954,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"OPT_STEP_ADAMW",
};
-static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
+static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
-static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
+static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@@ -1057,6 +1058,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
@@ -1018,6 +1019,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"upscale(x)",
"pad(x)",
"pad_reflect_1d(x)",
@ -382,16 +382,16 @@ index 950772c7..2276b631 100644
"arange(start, stop, step)",
"timestep_embedding(timesteps, dim, max_period)",
"argsort(x)",
@@ -1087,7 +1089,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
@@ -1048,7 +1050,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"adamw(x)",
};
-static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
+static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
-static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
+static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@@ -4262,6 +4264,25 @@ struct ggml_tensor * ggml_pad_reflect_1d(
@@ -4270,6 +4272,25 @@ struct ggml_tensor * ggml_pad_reflect_1d(
return result;
}

View file

@ -12,7 +12,7 @@ regex
2 files changed, 22 insertions(+), 1 deletion(-)
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index a35b498c..032019c9 100644
index a9ee9f03..1306864e 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -296,7 +296,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {

View file

@ -8,10 +8,10 @@ Subject: [PATCH] maintain ordering for rules for grammar
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/common/json-schema-to-grammar.cpp b/common/json-schema-to-grammar.cpp
index 90679822..56043678 100644
index 5b3059c2..656b3eca 100644
--- a/common/json-schema-to-grammar.cpp
+++ b/common/json-schema-to-grammar.cpp
@@ -346,7 +346,7 @@ private:
@@ -349,7 +349,7 @@ private:
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
std::function<json(const std::string &)> _fetch_json;
bool _dotall;

View file

@ -22,10 +22,10 @@ multiple batches of processing until everything is complete.
4 files changed, 51 insertions(+), 106 deletions(-)
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index 0343ba8a..4b3e6a83 100644
index cd06ad91..77177c5e 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -594,13 +594,12 @@ llm_graph_result_ptr llama_context::build_kv_self_shift(
@@ -583,13 +583,12 @@ llm_graph_result_ptr llama_context::build_kv_self_shift(
llm_graph_result_ptr llama_context::build_kv_self_defrag(
ggml_context * ctx0,
@ -41,7 +41,7 @@ index 0343ba8a..4b3e6a83 100644
#if 0
// CPU defrag
//
@@ -672,32 +671,20 @@ llm_graph_result_ptr llama_context::build_kv_self_defrag(
@@ -661,32 +660,20 @@ llm_graph_result_ptr llama_context::build_kv_self_defrag(
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
}
#else
@ -79,7 +79,7 @@ index 0343ba8a..4b3e6a83 100644
ggml_tensor * view_v_src;
ggml_tensor * view_v_dst;
@@ -705,34 +692,30 @@ llm_graph_result_ptr llama_context::build_kv_self_defrag(
@@ -694,34 +681,30 @@ llm_graph_result_ptr llama_context::build_kv_self_defrag(
if (cparams.flash_attn) {
// NOTE: the V cache is not transposed when using flash attention
view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
@ -122,7 +122,7 @@ index 0343ba8a..4b3e6a83 100644
#endif
return res;
@@ -741,8 +724,6 @@ llm_graph_result_ptr llama_context::build_kv_self_defrag(
@@ -730,8 +713,6 @@ llm_graph_result_ptr llama_context::build_kv_self_defrag(
void llama_context::kv_self_update() {
auto & kv = kv_self;
@ -131,7 +131,7 @@ index 0343ba8a..4b3e6a83 100644
if (kv->has_shift) {
if (!kv->get_can_shift()) {
GGML_ABORT("The current context does not support K-shift");
@@ -763,8 +744,6 @@ void llama_context::kv_self_update() {
@@ -752,8 +733,6 @@ void llama_context::kv_self_update() {
res->set_inputs(nullptr);
graph_compute(gf, false);
@ -140,7 +140,7 @@ index 0343ba8a..4b3e6a83 100644
}
{
@@ -779,49 +758,28 @@ void llama_context::kv_self_update() {
@@ -768,49 +747,28 @@ void llama_context::kv_self_update() {
// defragment the KV cache if needed
if (kv->do_defrag) {
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
@ -202,7 +202,7 @@ index 0343ba8a..4b3e6a83 100644
}
enum llama_pooling_type llama_context::pooling_type() const {
@@ -1305,9 +1263,12 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1294,9 +1252,12 @@ int llama_context::decode(llama_batch & inp_batch) {
// find KV slot
{
if (!kv_self->find_slot(ubatch)) {
@ -219,7 +219,7 @@ index 0343ba8a..4b3e6a83 100644
if (!kv_self->recurrent) {
diff --git a/src/llama-context.h b/src/llama-context.h
index baa03276..a59ff8fd 100644
index a50c4afa..30f84bfd 100644
--- a/src/llama-context.h
+++ b/src/llama-context.h
@@ -5,6 +5,7 @@
@ -230,7 +230,7 @@ index baa03276..a59ff8fd 100644
#include "ggml-cpp.h"
@@ -180,7 +181,8 @@ private:
@@ -179,7 +180,8 @@ private:
llm_graph_result_ptr build_kv_self_defrag(
ggml_context * ctx0,

View file

@ -8,10 +8,10 @@ Subject: [PATCH] add phony target ggml-cpu for all cpu variants
1 file changed, 2 insertions(+)
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
index f00700da..91d6a7d5 100644
index 43d9fc4f..4c0d3824 100644
--- a/ggml/src/CMakeLists.txt
+++ b/ggml/src/CMakeLists.txt
@@ -278,6 +278,7 @@ function(ggml_add_cpu_backend_variant tag_name)
@@ -279,6 +279,7 @@ function(ggml_add_cpu_backend_variant tag_name)
endforeach()
ggml_add_cpu_backend_variant_impl(${tag_name})
@ -19,11 +19,11 @@ index f00700da..91d6a7d5 100644
endfunction()
ggml_add_backend(CPU)
@@ -286,6 +287,7 @@ if (GGML_CPU_ALL_VARIANTS)
@@ -287,6 +288,7 @@ if (GGML_CPU_ALL_VARIANTS)
if (NOT GGML_BACKEND_DL)
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
endif()
+ add_custom_target(ggml-cpu)
ggml_add_cpu_backend_variant(sandybridge AVX)
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 BMI2 FMA)
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 BMI2 FMA AVX512)
ggml_add_cpu_backend_variant(x64)
ggml_add_cpu_backend_variant(sse42 SSE42)
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)

View file

@ -1,6 +1,6 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Tue, 8 Apr 2025 20:33:01 -0700
Date: Thu, 1 May 2025 15:05:08 -0700
Subject: [PATCH] remove amx
disable amx as it reduces performance on some systems
@ -9,16 +9,16 @@ disable amx as it reduces performance on some systems
1 file changed, 4 deletions(-)
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
index 91d6a7d5..d6b393a2 100644
index 4c0d3824..79c26312 100644
--- a/ggml/src/CMakeLists.txt
+++ b/ggml/src/CMakeLists.txt
@@ -293,10 +293,6 @@ if (GGML_CPU_ALL_VARIANTS)
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 BMI2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 BMI2 FMA AVX_VNNI)
@@ -296,10 +296,6 @@ if (GGML_CPU_ALL_VARIANTS)
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
- if (NOT MSVC)
- # MSVC doesn't support AMX
- ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
- ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
- endif()
elseif (GGML_CPU)
ggml_add_cpu_backend_variant_impl("")

View file

@ -53,7 +53,7 @@ index 381a9c7d..e45b453d 100644
}
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index 032019c9..ba37df35 100644
index 1306864e..d6515ff6 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -1459,7 +1459,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {

View file

@ -8,7 +8,7 @@ Subject: [PATCH] ollama debug tensor
1 file changed, 6 insertions(+)
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
index 432942bf..6d4abe4c 100644
index 34624cca..59bd3c62 100644
--- a/ggml/src/ggml-cpu/ggml-cpu.c
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
@@ -15,6 +15,8 @@
@ -20,7 +20,7 @@ index 432942bf..6d4abe4c 100644
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
@@ -2854,6 +2856,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
@@ -2859,6 +2861,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
ggml_compute_forward(&params, node);

View file

@ -13,10 +13,10 @@ models not supported in llama.cpp
4 files changed, 24 insertions(+)
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index 0568565f..dd01df60 100644
index eb7b5325..df42d1a5 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -73,6 +73,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
@@ -74,6 +74,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
{ LLM_ARCH_PLM, "plm" },
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
@ -24,7 +24,7 @@ index 0568565f..dd01df60 100644
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -1586,6 +1587,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
@@ -1606,6 +1607,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
@ -48,10 +48,10 @@ index 0568565f..dd01df60 100644
LLM_ARCH_UNKNOWN,
{
diff --git a/src/llama-arch.h b/src/llama-arch.h
index 6a989034..b6227eeb 100644
index bc8a4f0b..bda9d071 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -75,6 +75,7 @@ enum llm_arch {
@@ -76,6 +76,7 @@ enum llm_arch {
LLM_ARCH_CHAMELEON,
LLM_ARCH_SOLAR,
LLM_ARCH_WAVTOKENIZER_DEC,
@ -60,10 +60,10 @@ index 6a989034..b6227eeb 100644
LLM_ARCH_BAILINGMOE,
LLM_ARCH_UNKNOWN,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index d051696c..c8374159 100644
index 9d099f11..ef70486d 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -1425,6 +1425,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -1437,6 +1437,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@ -71,7 +71,7 @@ index d051696c..c8374159 100644
default: throw std::runtime_error("unsupported model architecture");
}
@@ -13704,6 +13705,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
@@ -13751,6 +13752,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_CHAMELEON:
case LLM_ARCH_SOLAR:
case LLM_ARCH_BAILINGMOE:

View file

@ -184,10 +184,10 @@ index f8c291de..2a3a62db 100644
const char * grammar_root,
bool lazy,
diff --git a/src/llama-sampling.cpp b/src/llama-sampling.cpp
index d1497985..b1a9dca3 100644
index c0a5f934..75731053 100644
--- a/src/llama-sampling.cpp
+++ b/src/llama-sampling.cpp
@@ -1465,7 +1465,7 @@ static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
@@ -1466,7 +1466,7 @@ static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
trigger_patterns_c.push_back(trigger_pattern.pattern.c_str());
}
@ -196,7 +196,7 @@ index d1497985..b1a9dca3 100644
ctx->grammar->lazy, trigger_patterns_c.data(), trigger_patterns_c.size(),
ctx->grammar->trigger_tokens.data(), ctx->grammar->trigger_tokens.size());
@@ -1547,7 +1547,7 @@ static struct llama_sampler * llama_sampler_init_grammar_impl(
@@ -1548,7 +1548,7 @@ static struct llama_sampler * llama_sampler_init_grammar_impl(
/* .vocab = */ vocab,
/* .grammar_str = */ grammar_str,
/* .grammar_root = */ grammar_root,